• 回答数

    4

  • 浏览数

    146

草菜一家
首页 > 学术期刊 > 广义逆矩阵论文开题报告

4个回答 默认排序
  • 默认排序
  • 按时间排序

a宝贝洁洁

已采纳

如下:

线性方程组:A(mxn)X = b ------ (1)

A是m行n列(m>n)的行列式:A'是A的转置矩阵,将(1)变成

(A'A)X = A'b - - - - (2)

(A'A)是nxn阶方阵,它的逆矩阵称为广义逆矩阵。

(A'A)行列式不为零,方程组(2)有唯一解,且与(1)的最小二乘解相对应!此结论的证明也不复杂。

思想:

广义逆的思想可追溯到1903年(E.)I.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。

1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。而任意矩阵的广义逆定义最早是由.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。

267 评论

余文文214

线性方程组:A(mxn)X = b ------ (1)A是m行n列(m>n)的行列式:A'是A的转置矩阵,将(1)变成(A'A)X = A'b - - - - (2)(A'A)是nxn阶方阵,它的逆矩阵称为广义逆矩阵。(A'A)行列式不为零,方程组(2)有唯一解,且与(1)的最小二乘解相对应!此结论的证明也不复杂。

138 评论

童真记忆2008

注:下文中^后面的内容为上标广义逆矩阵是对逆矩阵的推广。 若A为非奇异矩阵,则线性方程组Ax=b的解为x=A^(-1)b,其中A的逆矩阵A^(-1)满足A^(-1)A=AA^(-1)=I(I为单位矩阵)。若A是奇异阵或长方阵,Ax=b可能无解或有很多解。若有解,则解为x=Xb+(I-XA)у,其中у是维数与A的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用A^g、A^-或A^(1)等符号表示,有时简称广义逆。当A非奇异时,A^(-1)也满足AA^(-1)A=A,且x=A^(-1)b+(I-A^(-1)A)у=A^(-1)b。故非异阵的广义逆矩阵就是它的逆矩阵,说明广义逆矩阵确是通常逆矩阵概念的推广。存在一个唯一的矩阵M使得下面三个条件同时成立:(1) AMA=A;(2)MAM=M;(3)AM与MA均为对称矩阵。这样的矩阵M成为矩阵A的Moore-Penrose广义逆矩阵,记作M=A(^+).注:^后面的内容为上标 1955年R.彭罗斯证明了对每个m×n阶矩阵A,都存在唯一的n×m阶矩阵X,满足:①AXA=A;②XAX=X;③(AX)*=AX;④(XA)*=XA。通常称X为A的穆尔-彭罗斯广义逆矩阵,简称M-P逆,记作A^+。当A非奇异时,A^(-1)也满足①~④,因此M-P逆也是通常逆矩阵的推广。在矛盾线性方程组Ax=b的最小二乘解中,x=A^(-1)b是范数最小的一个解。若A是n阶方阵,k为满足(图1)的最小正整数(rank为矩阵秩的符号),记作k=Ind(A),则存在唯一的n阶方阵X,满足:(1) AkXA=Ak;(2) XAX=X; (3) AX=XA。 广义逆的思想可追溯到1903年(E.)I.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。而任意矩阵的广义逆定义最早是由.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。当时人们对此似乎很少注意。这一概念在以后30年中没有多大发展。曾远荣在1933年,.默里和J.冯·诺伊曼在1936年对希尔伯特空间中线性算子的广义逆作过讨论。20世纪50年代围绕着某些广义逆的最小二乘性质的讨论重新引起了人们对这个课题的兴趣。1951年瑞典人A.布耶尔哈梅尔重新发现了穆尔所定义的广义逆,并注意到广义逆与线性方程组的关系。.格雷维尔、.拉奥和其他人也作出了重要的贡献。1955年,彭罗斯证明了存在唯一的X=A+满足前述性质①~④,并以此作为 A+的定义。1956年,R.拉多证明了彭罗斯定义的广义逆与穆尔定义的广义逆是等价的,因此通称A+为穆尔-彭罗斯广义逆矩阵。

132 评论

amy229815572

广义逆矩阵的计算方法大致可分为三类:以满秩分解和奇异值分解为基础的直接法,迭代法和其他一些常用于低阶矩阵的非凡方法。以A+的计算为例。若A是一个秩为r的m×n阶非零矩阵,记作(图6),,有满秩分解A=F·G,其中(图7),则(图8),即将广义逆矩阵的计算化为通常逆矩阵的计算。常用LU分解和QR分解等方法实现满秩分解,然后求出A+。若A有奇异值分解A=UDV*,其中U、V为m阶和n阶酉矩阵,(图9)是m×n阶矩阵,∑是r阶对角阵,对角元(图10)是A的r个非零奇异值(AA*的非零特征值的平方根),则A+=VD+U*,其中(图11)是n×m阶矩阵。也可用豪斯霍尔德变换先将 A化为上双对角阵J0=P*AQ,然后再对J0使用QR算法化为矩阵D=G*J0h,于是A=(PG)D(Qh)*,故A+1=(Qh)D+(PG)*。设λ1是AA*的最大非零特征值,若0<α<2/λ1,则计算A+的一个迭代法是x0=αA*,xn+1=(2I-Axn),当n→∞时,xn收敛于A+。格雷维尔逐次递推法也是计算A+的常用方法。设A的第k列为αk(k=1,2,…,n),A1=α1,Ak=(Ak-1,αk)(k=2,3,…,n),则(图12),式中(图13)(图14)。1955年以后,出现了大量的关于广义逆矩阵的理论、应用和计算方法的文献。70年代还出版了一些专著和会议录,指出广义逆矩阵在控制论、系统辨识、规划论、网络理论、测量、统计和计量经济学等方面的应用。

221 评论

相关问答

  • 歧义论文开题报告

    南京师范大学 毕业设计(论文)开题报告 学生姓名: 学号: 院(系): 专

    冷月无痕MNG 6人参与回答 2023-12-09
  • 矩阵分解毕业论文

    随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序

    傻傻的双子 4人参与回答 2023-12-09
  • 分块矩阵毕业论文

    你怎么也做分块矩阵的应用毕业论文??

    SmartGirl~~ 2人参与回答 2023-12-08
  • 矩阵乘积的正定性论文开题报告

    矩阵正定性的性质: 1、正定矩阵的特征值都是正数。 2、正定矩阵的主元也都是正数。 3、正定矩阵的所有子行列式都是正数。 4、正定矩阵将方阵特征值,主元,行列式

    胖墩儿可可 6人参与回答 2023-12-09
  • 论文矩阵不等式的开题报告

    论文的研究方法一般从较宽泛的领域看有定性研究与定量研究;从取材方面来看有实证研究(实际调查案例为分析基础)与文献归纳法等;如从分析手法上来看有归纳法、演绎法与比

    monica的私人花园 4人参与回答 2023-12-12