fanfanwing
矩阵正定性的性质:
1、正定矩阵的特征值都是正数。
2、正定矩阵的主元也都是正数。
3、正定矩阵的所有子行列式都是正数。
4、正定矩阵将方阵特征值,主元,行列式融为一体。
正定矩阵的判别方法:
1、 对称矩阵A正定的充分必要条件是A的n个特征值全是正数。
2、对称矩阵A正定的充分必要条件是A合同于单位矩阵E。
3、对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU
4、对称矩阵A正定,则A的主对角线元素均为正数。
5、对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。
扩展资料:
广义的正定矩阵判断:
设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M正定矩阵。
例如:B为n阶矩阵,E为单位矩阵,a为正实数。aE+B在a充分大时,aE+B为正定矩阵。(B必须为对称阵)
狭义正定矩阵判断:
一个n阶的实对称矩阵M是正定的当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。
参考资料来源:百度百科-正定矩阵
总迷路的熊
设实对称矩阵A,如果对于任意的实非零向量x≠0有x^TAx>0,则矩阵A称为正定的。正定矩阵的性质与判别方法1. 对称矩阵A正定的充分必要条件是A的n个特征值全是正数。2.对称矩阵A正定的充分必要条件是A合同于单位矩阵E。3.对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU 4.对称矩阵A正定,则A的主对角线元素均为正数。5.对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。
始终不遇
如果A和B都是实对称正定阵,且AB=BA=B^TA^T=(AB)^T
这说明AB是对称阵
再利用AB的特征值都是正数(因为AB相似于对称正定阵A^{1/2}BA^{1/2})得到AB对称正定。
例如:
^证明:因为A,B正定,所以 A^T=A,B^T=B
(必要性) 因为AB正定,所以 (AB)^T=AB
所以 BA=B^TA^T=(AB)^T=AB
(充分性) 因为 AB=BA
所以 (AB)^T=B^TA^T=BA=AB
所以 AB 是对称矩阵
由A,B正定, 存在可逆矩阵P,Q使 A=P^TP,B=Q^TQ.
故 AB = P^TPQ^TQ
而 QABQ^-1=QP^TPQ^T = (PQ)^T(PQ) 正定, 且与AB相似
故 AB 正定
扩展资料:
(1)广义定义:设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M为正定矩阵。
例如:B为n阶矩阵,E为单位矩阵,a为正实数。在a充分大时,aE+B为正定矩阵。(B必须为对称阵)
(2)狭义定义:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。
参考资料来源:百度百科-正定矩阵
娃娃哇娃娃呀
1 相关定义 定义1 设A∈,若对≠ x∈,都有AX > 0,则称A为正定矩阵,记为A∈. 记={A|≠ x∈,使AX > 0}. 定义2设A∈,如果对≠X∈,都有正对角矩阵D=> 0,使得AX > 0,则称A为广义正定矩阵,记为A∈,若D=与x无关,则记为A∈。记={A∈|≠X]正对角矩阵D,使DAX > 0}.定义3 设A∈,若=A,对≠ x∈ ,都有AX > 0,则称A为实对称正定矩阵,记为A ∈ S+. 记={A∈|≠x,=A,使AX > 0}.定义4 设A∈,如果对≠X,都有S=∈使得DAX > 0,则称A为广义正定矩阵,记为A∈,若S=与x无关,则记为A∈.记={A∈|≠X,S=,使DAX > 0}.定义5设A∈,如果对≠ X∈,都有S=.s+,使得AX > 0,则称A为广义正定矩阵,记为A∈.若S=与x无关,则记为A∈
矩阵的迹有下列性质 线性tr(A+B) = tr(A) + tr(B)tr(kA) = ktr(A)线性算子d tr(A) = tr(dA)tr(AB) = t
1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重
矩阵正定性的性质: 1、正定矩阵的特征值都是正数。 2、正定矩阵的主元也都是正数。 3、正定矩阵的所有子行列式都是正数。 4、正定矩阵将方阵特征值,主元,行列式
论文的研究方法一般从较宽泛的领域看有定性研究与定量研究;从取材方面来看有实证研究(实际调查案例为分析基础)与文献归纳法等;如从分析手法上来看有归纳法、演绎法与比
论文开题报告基本要素 各部分撰写内容 论文标题应该简洁,且能让读者对论文所研究的主题一目了然。 摘要是对论文提纲的总结,通常不超过1或2页,摘要包含以下内容: