首页 > 期刊投稿知识库 > 己二酸工艺毕业论文

己二酸工艺毕业论文

发布时间:

己二酸工艺毕业论文

己二酸制备工艺:C4 烯烃法

一、C4烯烃法:是以混合C4馏分中的有效成分正丁烯、丁二烯等为原料,和空气(或氧气),在V2O5-P2O3系催化剂作用下经气相氧化反应生成顺酐,其中正丁烯在反应过程中先脱氢生成丁二烯,再氧化生成顺酐。

二、己二酸:又称肥酸,是一种重要的有机二元酸,结构式为HOOC(CH2)4COOH。能够发生成盐反应、酯化反应、酰胺化反应等,并能与二元胺或二元醇缩聚成高分子聚合物等。己二酸是工业上具有重要意义的二元羧酸,在化工生产、有机合成工业、医药、润滑剂制造等方面都有重要作用,产量居所有二元羧酸中的第二位。

三、主要用途:

己二酸主要用作尼龙66和工程塑料的原料,也用于生产各种酯类产品,还用作聚氨基甲酸酯弹性体的原料,各种食品和饮料的酸化剂,其作用有时胜过柠檬酸和酒石酸。

己二酸也是医药、酵母提纯、杀虫剂、粘合剂、合成革、合成染料和香料的原料。

己二酸酸味柔和且持久,在较大的浓度范围内pH值变化较小,是较好的pH值调节剂。GB2760-2007规定,本品固体饮料,其最大使用量是0.01g/kg;也可用于果冻和果冻粉,用于果冻的最大使用量为0.01g/kg;用于果冻粉时,可按冲调倍数增加使用量。

蒋永生等以聚乙二醇为相转移催化剂,在功率为50W的超声波作用下,采用30%的硝酸氧化环己醇合成己二酸。在反应过程中,废气中的NO2质量浓度明显减小,吸收处理完全,减少了NO2对大气环境的污染,己二酸的产率可达到46%。采用稀硝酸氧化环己醇未见有明显产品生成,表明聚乙二醇-300有较好的催化效果,当相转移催化剂的用量为2%时,具有很明显的催化效果。超声波及相转移催化剂在反应中均有重要作用,超声波作用时间为40min最佳。马祖福等研究了以Na2WO4·2H2O为催化剂,磺基水杨酸为配体,采用清洁的双氧水为氧化剂催化氧化环己醇合成己二酸。采用正交设计的方法,综合考虑了催化剂与配体比例、催化剂用量及反应时间对反应的影响,以及各因素之间的相互作用对试验结果的影响,确立最佳反应条件。在反应初期形成过氧钨酸盐有机酸配位化合物,此活性中心不但具有载活性氧物种,而且具有一定的亲油性,使双相体系中发生在水相里的氧化和水解反应易于进行,催化效果较好。该反应操作简单,易于控制,且副产物只有水,是一种对环境友好的合成路线。王向宇等研究了以精苯为原料制备环己烯的工艺条件。精苯在钉催化剂的存在下控制一定的温度、压力可以生成环己烯和环己烷。苯的转化率为40%-50%,其中环己烯的选择性为80%。再在高硅沸石催化剂存在下,控制一定的浓度、压力,可使环己烯水化生成环己醇。环己烯的转化率为10%,环己醇的选择性为99%。环己醇被硝酸氧化即可制得己二酸。采用该工艺生产己二酸具有产品质量好,纯度高的特点。此外,精苯在部分加氢时的反应条件温和,加氢及水合反应均在液相中进行,操作安全,不需采取专门的安全措施;副产品少,环己烷是唯一的副产品,它也可以作为化学试剂出售;加氢和水合反应过程不像传统工艺那样产生一元酸、二元酸、酯等,废液量少,环保投资低,具有环保优势;生产过程不存在设备结垢问题,不存在堵塞问题,因此事故少、维修少;能耗低,生产成本较低。宫红等采用长链的伯铵或叔胺的硫酸盐为相转移催化剂,在Na2WO4·2H2O的作用下,以高锰酸钾氧化环己醇制备己二酸。反应条件温和,不产生有毒气体,反应速度快、产率较高。值得注意的是,若不用此相转移催化剂,且没有控制好高锰酸钾的滴加量,会造成冲料而引起爆炸。杨秀英用聚乙二醇(PEG-6000)、十二烷基硫酸钠(SDS)等作为环己醇液相氧化制取己二酸的相转移催化剂,实验发现SDS在高锰酸钾氧化环己醇的反应中具有较好的相转移催化作用,改变了反应体系的微环境,能够提高己二酸的收率。Bfziat等使用廉价、清洁空气作为氧化剂,用碳作为载体,铂为催化剂C(Pt):5.4%,在液相体系中由环己醇合成了己二酸。在温度423K、压力5MP时己二酸的转化率、选择性均为50%,主要副产物为戊二酸和丁二酸。该反应以清洁、廉价的空气作为氧化剂,对在水相中由环己醇合成有价值衍生物,也是一种比较理想的氧化方法。

dflksdhfkj fyisdufyio yidufyoi asidufyodsiupsadugyahuioyfouaghopawuighorweuigh hg hfgas hd o fgpiuhs gposhgposdiuf poi opgj opsadhgosjd pog jpisdf g

硝酸工艺毕业论文

整点柠檬酸 亚硝酸钠混合 加水,产生NO2气体,NO2溶于水生成硝酸

根据浓硝酸与铜反应,应该看还原产物的价态,来判断氧化性的强弱。 浓硝酸与铜反应,还原产物NO2中,氮为+4价。 稀硝酸与铜反应,还原产物NO中,氮为+2价。 他们同样把铜单质氧化为Cu2+,但浓硝酸只需要下降1价就可以了,而稀硝酸却要下降3价,当然是浓硝酸氧化性强了。

化学是重要的基础科学之一,是一门以实验为基础的学科,在与物理学、生物学、地理学、天文学等学科的相互渗透中,得到了迅速的发展,也推动了其他学科和技术的发展。下文是我为大家搜集整理的关于大学化学毕业论文的内容,欢迎大家阅读参考! 大学化学毕业论文篇1 浅议化学氧化改性对碳毡空气阴极表面特征的影响 微生物燃料电池(MFC)是一种可以将废水中有机物的化学能转化为电能同时处理废水的新型电化学装置。但输出功率低、运行费用高且性能不稳定等严重制约了MFC的实际应用。影响MFC性能的主要因素有产电微生物、阴极催化剂、电极材料、反应器构型及运行参数等。其中,阴极是影响MFC性能及运行成本的重要因素。目前,有学者通过筛选电极材料及对电极材料进行改性来提高MFC性能和降低成本,效果较为显着。因此,笔者采用HNO3氧化碳毡,制作改性碳毡空气阴极,研究化学氧化改性对碳毡空气阴极表面特征的影响;并通过循环伏安测试,考察改性后碳毡阴极的稳定性。 1材料与方法 1.1试验装置及材料 采用连续流运行方式,试验装置主体是由有机玻璃制成的圆柱体,中间阳极室有效容积为36mL(内径为2cm,高为11.5cm),为确保阳极室的厌氧环境,用密封柱密封。阴极在阳极室外侧壁围绕。装置总容积为3.92L,密封盖上有阳极孔、阴极孔及检测孔,以便用铜导线、鳄鱼夹来连接外电路,外接1000Ω电阻作为负载。进水口设计在底部中央,制备成无膜上升流式反应器。阳极是直径为1cm的碳棒,阴极是厚度为3cm的碳毡,输出电压由万用表采集。 1.2原水水质及运行参数 垃圾渗滤液取自沈阳市老虎冲垃圾填埋场的集水井,其水质如表1所示。接种微生物为取自UASB反应器中的厌氧颗粒污泥,接种量为25mL。启动期的进水流量控制在30mL/h,COD约为500mg/L。稳定运行后进水流量逐步提升到90mL/h,COD提升到1500mg/L。 装置在32℃下恒温运行。MFC接种厌氧污泥后,先用COD为1000mg/L的垃圾渗滤液驯化一个周期,使阳极的产电微生物成功挂膜,MFC运行稳定后,再以COD为1500mg/L的垃圾渗滤液作为阳极进水。 1.3改性碳毡空气阴极的制备 阴极预处理:将碳毡剪成所需尺寸,然后浸泡在1mol/L的盐酸溶液中,目的是去除碳毡中的杂质离子,24h后取出,用去离子水反复清洗直至清洗液为中性,放入105℃烘箱中干燥2h。 碳毡改性:将预处理过的碳毡浸入65%~68%的浓硝酸中,用水浴加热至75℃,处理不同时间后取出并用蒸馏水反复清洗直至清洗液为中性,放入105℃烘箱中干燥2h。 催化剂吸附:将经改性后的碳毡放入Fe/C催化剂溶液(硝酸铁浓度为0.25mol/L,活性炭粉为1g)中,于磁力搅拌器上搅拌30min,然后取出碳毡放入105℃烘箱中烘干。 1.4分析项目和方法 外电阻R通过可调电阻箱控制,电压由万用表直接读取,功率密度P通过公式P=U2/RV计算得到,其中U为电池电压,V为阳极室体积。 表观内阻采用稳态放电法测定。 循环伏安测试以饱和甘汞电极作为参比电极,采用传统三电极体系,电化学工作站为EC705型。 电极电导率采用伏特计测定,COD采用快速密闭消解法测定,NH+4-N采用纳氏试剂光度法测定。 2结果与讨论 2.1改性时间对催化剂担载量的影响 电极表面催化剂担载量是影响电极性能的直接因素,而化学改性将影响电极吸附催化剂的担载量(如表2所示)。碳毡经过HNO3化学氧化处理不同时间后,其质量均出现一定程度的减少,且随着处理时间的增加,单位质量碳毡减少量也逐步增加,同时,单位质量碳毡所吸附催化剂的量也增加。这是由于HNO3的氧化作用使碳毡结构发生了变化,表面沟壑加深加密,粗糙度和表面积增加。同时碳毡表面的H+易被催化剂Fe3+取代,也有利于阴极催化剂的吸附。 2.2化学改性时间对电导率的影响 电极电导率是表征电极性能的重要参数之一。考察了碳毡空气阴极化学改性时间对其电导率的影响, 经改性后碳毡空气阴极的电导率明显提高,且随着处理时间的增加,电导率升高,当化学改性时间达到6h后,电导率趋于稳定。 这是因为碳毡具有石墨层状结构,层与层之间主要是以范德华力相结合,故层间较易引入其他分子、原子或离子而形成层间化合物。应用HNO3处理碳毡时,HNO3分子嵌入层间,同时吸引石墨电子,使其内部空穴增多,因此大大提高了碳毡的电导率。当碳毡层间嵌入的HNO3分子达到饱和时,将不再影响碳毡的电导率。 2.3改性时间对MFC电化学性能的影响 2.3.1对产电性能的影响 分别选取经HNO3氧化0、2、4、6、8、10h的碳毡制备碳毡空气阴极,并以石墨棒为阳极,垃圾渗滤液为燃料构建MFC,进行产电试验。极化曲线斜率和功率密度是表征MFC产电性能的两个重要参数,因此,通过测定输出电压和电流等参数,分别得到极化曲线和功率密度曲线。整个试验过程保持进水流量为120mL/h,反应温度为32℃。经HNO3改性的碳毡空气阴极MFC的极化都经历了活化极化、欧姆极化和浓度极化三个阶段。随着HNO3改性时间的延长,活化极化、欧姆极化和浓度极化损耗逐渐减小,电池的极化曲线斜率逐渐减小,即表观内阻逐渐降低;当改性时间为6h时,极化曲线斜率达到最小,表明此时表观内阻最小(358Ω)。之后,随改性时间的增加,极化曲线斜率增大,即表观内阻增大。 随着处理时间的增加,电池的功率密度同样经历了一个先增高再降低的过程,与图2的规律基本一致。其中当处理时间为6h时,电池的产电性能最好,最大功率密度达到6265.67mW/m3,较未经HNO3处理的MFC的最大功率密度(1838.46mW/m3)增大了2.4倍。由此可知,通过HNO3化学氧化改性碳毡空气阴极是改善MFC产电性能的有效方式之一。 2.3.2对CV曲线的影响 循环伏安法(CV)是表征MFC放电容量的重要方法之一。化学改性碳毡空气阴极MFC的CV曲线如图4所示。其中,扫描速度为50mV/s,扫描范围为-1~1V。扫描曲线以下的积分面积代表了电池的放电容量。由此可知,随着处理时间的增加,放电容量先增加后减小,化学氧化时间为6h时,构建的MFC放电容量最大,即MFC性能最好。综上所述,HNO3化学氧化碳毡空气阴极的最佳时间为6h。 2.4MFC的产电除污稳定性 2.4.1产电性能稳定性 对经HNO3化学氧化处理6h的碳毡空气阴极MFC进行了CV测试,共进行了21次循环扫描,结果表明:随着循环次数的增加,曲线形状几乎没有改变,第1、6、11、16、21次的循环伏安曲线基本重合,面积近乎恒定,即放电容量几乎没有变化,说明电池性能比较稳定,能够长期稳定运行。 在其他条件不变的情况下,采用经HNO3氧化6h的碳毡作为阴极,保持进水流量为120mL/h,外接1000Ω电阻持续运行14d,每天记录输出电压。 在最初的3d内,输出电压从62mV增加到483mV,第4天达到最大为492mV,接下来的一周则稳定在470mV左右。随着运行时间的增加,电压略有下降,这可能是阳极室溶液的不断流动,冲刷阳极,带出一定量产电菌同时增加了电池的内阻所致,但总体上电池的运行比较稳定。 2.4.2除污性能稳定性 采用经HNO3化学氧化6h的碳毡作为阴极、石墨棒作为阳极、外接1000Ω电阻的MFC,以连续流方式处理垃圾渗滤液。试验过程中原水COD为(2376±200)mg/L,NH+4-N为(151±10)mg/L,保持进水流量为120mL/h、温度为32℃,反应初期(1~5d),出水COD浓度急剧下降,之后出水COD浓度逐渐趋于稳定。 COD由初始的(2376±200)mg/L降到(238±15)mg/L,去除率达到89.9%~91.2%,高于谢珊等采用两瓶型MFC处理垃圾渗滤液对COD的去除率(78.3%)。而氨氮则由初始的(151±10)mg/L降到(86±5)mg/L,去除率达到39.3%~46.8%。去除的氨氮中部分以NH+4形式随水流进入阴极室,在阴极室扩散到空气中或转化为其他形式的氮,部分在阳极室作为电子供体被氧化。He等的研究也证实了氨氮可以作为MFC的燃料。 3结论 ①碳毡空气阴极吸附的催化剂量随着HNO3化学氧化碳毡时间的增加而增加,但是过量的催化剂不但不能促进反应,反而会增加电池内阻从而降低电池产电性能。碳毡空气阴极电导率随着HNO3化学氧化碳毡时间的增加而增加,并逐渐趋于稳定。 ②随着HNO3化学氧化碳毡时间的增加,碳毡空气阴极MFC的功率密度、放电容量呈现先升高后降低的趋势,而极化曲线斜率呈现先降低后升高的趋势。 ③HNO3化学氧化碳毡的最佳时间为6h。阴极改性6h后电池产电性能较稳定,最大功率密度比未改性增大2.4倍,达到了6265.67mW/m3,内阻降低到358Ω。 ④阴极改性6h后的MFC处理垃圾渗滤液的性能稳定。当进水COD为(2376±200)mg/L、NH+4-N为(151±10)mg/L时,对两者的去除率分别为(89.9%~91.2%)和(39.3%~46.8%)。 参考文献: [1]布鲁斯·洛根。微生物燃料电池[M].北京:化学工业出版社,2009. [2]FomeroJJ,RosenbaumM,CottaMA,etal.Microbialfuelcellperformancewithapressurizedcathodechamber[J].EnvironSciTechnol,2008,42(22):8578-8584. [3]李明,邵林广,梁鹏,等。集电方式对填料型微生物燃料电池性能的影响[J].中国给水排水,2013,29(9):24-28. 大学化学毕业论文篇2 浅谈化学分子力学对建筑建材选用的影响 引言 化学的应用给人类文明带来了翻天覆地的变化,在建筑领域,基于化学基础上的新型建筑建材的开发和利用提高了建筑的质量及建筑的安全性、稳定性、美观性等,是现代建筑研究的重要话题。此外,随着地球资源的日益紧张,环境污染的日益严峻,现代建材的研究和应用更为人们所重视,基于化学分子力学对建筑建材的选择和应用途径也日趋广泛。 1 建筑建材的选择和应用 1.1 现代建筑建材选择和应用的现状 伴随着人类文明的发展,建筑建材的生产工艺日益改进,生产技术的现代化,实现了建筑建材生产的智能化、自动化,各类建筑材料在科技发展的影响下不断优化。例如,混凝土的应用,它不仅是一种建筑材料,更具有装饰等作用。如利用混凝土砌块装饰建筑物墙壁,不但具有一定的美观性,还具有保温、隔热等效果。在高分子化学建材应用上,国外的发展要优于国内,例如塑料地板、高分子防水卷材等高分子化学建材最早出现与国际市场,被一些发达国家广泛应用。当前,建筑建材的选择和应用趋于高科技、多功能化,人们对建筑建材的性能、装饰效果、环保作用等有了更高要求。例如,涂料的选择,功能多、污染小、性能高、装饰效果强的材料更受欢迎。总之,人们对建筑建材的选择已由传统的实用性,转向了性价比高、性能好、低碳环保、功能多等多元方向。 1.2 新型化学建筑材料 新型化学建筑建材能赋予建筑新功能,在节约能源、优化环境等方面也有突出表现。例如建筑物墙体,可选择非粘土砖、建筑墙体板材、钢结构、玻璃结构等,其性能明显优于传统墙体。如玻璃结构,透光性好、装饰性强,给人以时尚、美观、大气之感。同时,新型化学建筑建材的多样性,使其具备更广泛的功能。例如塑料,新型塑料门窗,不仅美观、轻便、易安装,还具有很好的隔热性、耐腐性等; 又如新型的塑料管材,不但克服可传统管材的易腐蚀、易生锈、易老化等缺点,还具质轻、易安装、无污染等特点,极适合现代建筑环境; 再如塑料地板,节省原料,运输、施工方便,能带给人更好的舒适,具有良好的装饰效果好,是现代建筑建材的“新宠”。此外,混凝土、涂料等,在化学发展的影响下也具有更多、更广泛的用途,例如涂料的防水、防火、防毒、杀虫、隔音、保温等作用。 1.3 建筑建材的选择和应用原则 建筑建材的选择首先要满足应用需求,确保建筑建材选择的应用性能,确保其应用方便、应用安全和应用效果。其次,考虑建筑建材的美观性,建筑不是把好的东西堆积起来,而是一种艺术的创造与实践。 再次,充分考虑建筑建材的性价比,确保建筑工程的综合效益。在选择建筑建材时,先对建筑建材的特点、性能进行充分的了解,结合建筑需求,科学的选择适当的建筑建材。再对建筑建材的使用环境、使用目标进行综合的分析和研究,确保建筑建材应用的效果和性能,提高建筑物的功能性、美观性。最后,要全面认知建筑建材的应用工艺,确保建筑建材性能的发挥。例如混凝土,不但要了解各种混凝土的特点、配置比例等,还要重视其混合工艺,确保混凝土能到达理想的建筑效果。因此,建筑建材的选择是需要非常慎重的,而且需要遵循必要的应用原则。 2 化学分子力学对建筑建材的选择和应用的影响 新型建筑建材种类繁多、功能齐全。例如涂料,有有机水性涂料、溶剂类涂料等,在应用上也有较大区别。新型涂料应用化学知识,使涂料具有低污染、高性能、隔热、防火等多种功能,在材料选择时,要充分考虑建筑建材的应用目的,以达到工程施工的最大效益。又如保温隔热材料,现在常用的有玻璃棉、泡沫塑料等,这些材料的选择和应用与化学分子力学息息相关。以混凝土为例,要选择高性能的混凝土,首先,要了解混凝土的特点,它是一种由水泥、砂石、水、胶凝材料等按一定比例混合而成的复合材料。在材料的选择与应用中,必须认清其复合材料性质和各种混合比例,同时掌握混凝土的搅拌、成型、养护等等。 其次,在混凝土基本特点基础上,科学认知混凝土的集中搅拌特点,科学搭配各种材料比例,确保建筑建材的工作性、效益性和性价比。再次,在实践中结合理论科学的进行建筑建材的选择和应用。如通常情况下,建筑中会使用硅酸盐水泥,在该类建筑建材的选择上,不能单方面的考虑某一方面,要综合考虑,全面了解、可选选择。例如,在配置C40 以下的流态混泥土时,选择 42. 5Mpa 普硅水泥就不太合适,应结合应用需求,选择 32. 5Mpa 普硅水泥,避免选择的盲目性带来施工的不便。 此外,混凝土的选择要科学的利用化学知识,如相同标号的混凝土,要选择强度系数大,确保混凝土的耐久性; 相同强度的混凝土,则要选择需水量小的,降低水泥用量,确保水灰比例的科学性。同时,注重季节、气候等对于建筑建材化学性能的影响,如在混凝土配置中选择水泥,如在冬季施工则易采用 R 型硅酸盐水泥,搭配合适的掺料、外加剂等,确保混凝土性能。总之,化学丰富了现代建筑建材市场,为建筑提供了更多的选材机遇,而新型的建筑建材的使用一定要避开盲目性、跟风性,应在建筑目的的指导下,结合建筑建材性能,利用化学分子力学等知识,科学的、适当的对其进行选择和应用,以提高建筑建材的应用效果和应用价值。化学的分子力学,在建筑建材中应用非常广泛,基于建筑建材的化学分子力学应用,可以将建材的使用效率和使用效果做到最佳。总之,要充分利用化学分子力学的原理,在建筑建材中实现广泛的推广性使用,逐步加强对于化学原理的实际应用,从而达到推动行业发展的目的。 3 结语 高科技带来了建筑建材的高性能、多功能及轻便、美观等等。如玻璃材料钢化、夹丝、夹层等工艺不但提高了玻璃的安全性、抗压性,还对玻璃的隔音性、保温性等有很大的优化作用。随着化学工业的发展,越多的不可能变为可能,玻璃墙、塑料地板等,不断的丰富人类的建筑需求,提升建筑品味,使城市建设的风景更加多姿多彩。 参考文献 [1]辉宝琨。压力输送式预拌特种干混砂浆生产工艺选择[J].广东建材,2013( 9) . [2]崔东霞,费治华,姚海婷等,粉煤灰与化学外加剂对高性能混凝土开裂性能的影响[J].混凝土与水泥制品,2011( 4) . 猜你喜欢: 1. 大学毕业论文范文化学 2. 化学毕业论文精选范文 3. 大学化学论文范文 4. 化学毕业论文范文参考 5. 化学本科毕业论文范文

硝酸是重要基本化工原料,广泛应用于制染料、炸药、医药、塑料、氮肥、化学试剂以及用于冶金、有机合成。86%以上浓硝酸称发烟硝酸。硝酸与氨作用生成硝酸铵,它也是一种化肥,含氮量比硫酸铵高,对于各种土壤都有较高的肥效。炸药和硝酸有密切的关系。最早出现的炸药是黑火药,它的成分中含有硝酸钠(或硝酸钾)工业上制取浓硝酸(HNO3浓度高于96%)的方法有三种:一是在有脱水剂的情况下,用稀硝酸蒸馏制取的间接法,习惯上称“间硝";二是由氮氧化物、氧及水直接合成浓硝酸,称为’直硝’;三是包括:氧化、超共沸酸(75%—80%HNO3)生产和精馏的直接法。

硫酸工艺毕业论文

1. 年产10万吨苯乙烯工艺初步设计 简介:(论文字数:13923,页数:46) 2. 亚硫酸生产工艺设计(1万吨年) 简介:(论文字数:12614,页数:43) 3. 乙醛生产工艺设计(8万吨/年) 简介:(论文字数:15666,页数:49) 4. 膜法除硝中淡盐水的预处理 简介:(论文字数:13025,页数:38) 5. 硫铁矿制硫酸工艺初步设计 简介:(论文字数:15149,页数:62) 6. 年产十万吨PVC中HCl工序的工艺设计 简介:(论文字数:14873,页数:34) 7. 年产10万吨乙炔洁净工艺设计 简介:(论文字数:13187,页数:34) 8. 年产10万吨乙炔工艺设计 简介:(论文字数:13024,页数:33) 9. 20万吨聚氯乙烯生产工艺 简介:(论文字数:19390,页数:44) 10. 脉冲激光沉积法(PLD)制备非晶态BZN薄膜的研究 简介:(论文字数:17096,页数:40) 11. 恒顺达生物能源有限公司安全评价报告 简介:(论文字数:13199,页数:31) 12. 克酮酸的合成研究 简介:(论文字数:8603,页数:23 ) 13. 全膜法工艺在热电厂锅炉补给水系统中的应用及研究 简介:(论文字数:13367,页数:26) 14. 100Kt/a硝基氯苯装置TPS系统工程设计 简介:(论文字数:21679,页数:57) 15. 0.9Mt/a新井设计 简介:(论文字数:34465,页数:78) 16. 五龙矿1.20Mt/a 新井采区设计 简介:(论文字数:20446,页数:42) 17. 年产五万吨合成氨变换工段工艺初步设计 简介:(论文字数:10346,页数:37) 18. 高聚物/碳纳米管复合材料研究进展 简介:(论文字数:6289,页数:16 ) 19. 木粉含量对PVC/木粉复合材料性能的影响 简介:(论文字数:5040,页数:11 ) 20. 喜树发根培养及培养基中次生代谢产物的研究 简介:(论文字数:14476,页数:29) 21. 虾下脚料制备多功能叶面肥的研究 简介:(论文字数:12168,页数:25) 22. 缩合型有机硅电子灌封材料交联体系研究 简介:(论文字数:20114,页数:40) 23. 棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究 简介:(论文字数:19997,页数:35) 24. 酶法双甘酯的制备 简介:(论文字数:19829,页数:36) 25. 硅酸锆的提纯毕业论文 简介:(论文字数:12630,页数:27) 26. 腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究 简介:(论文字数:31673,页数:49) 27. 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究 简介:(论文字数:20776 页数:43) 28. 铝合金阳极氧化及封闭处理 简介:(论文字数:25561,页数:51) 29. 贝氏体白口耐磨铸铁磨球的研究 简介:(正文字数:16247,页数:39) 30. 80KW等离子喷涂设备的调试与工艺试验 简介:(正文字数:18733,页数:37) 31. 2800NM3/h高温旋风除尘器开发设计 简介:(正文字数:14802,页数:58) 32. 玻纤增强材料注塑成型工艺特点的研究 简介:(论文字数:6984,页数:13 ) 33. 年处理30万吨铜选矿厂设计 简介:(论文字数:14063,页数:50) 34. 年处理60万吨铁选厂毕业设计 简介:(论文字数:13536,页数:54) 35. 广东省韶关市大宝山铜铁矿井下开采设计 简介:(论文字数:53605页数:140) 36. 日处理1750吨铅锌选矿厂设计 简介:(字数:37308,页数:89) 37. 6000t/a聚氯乙烯乙炔工段初步工艺设计 简介:(字数:26743,页数:61) 38. 年产50万吨焦炉鼓冷工段工艺设计 简介:(字数:33226,页数:49) 39. 年产25万吨合成氨铜洗工段工艺设计 简介:(字数:23904,页数:55) 40. PX装置异构化单元反应器进行自动控制系统设计 简介:(字数:17463,页数:53) 41. PX装置异构化单元脱庚烷塔自动控制系统设计 简介:(字数:22340,页数:54) 42. 金属纳米催化剂的制备及其对环己烷氧化性能的影响 简介:(字数:三万,页数:66 ) 43. 高温高压条件下浆态鼓泡床气液传质特性的研究 简介:(字数:25168.页数:60) 44. 新型纳米电子材料的特性、发展及应用 简介:(字数:8679.页数:10 ) 45. 发达国家安全生产监督管理体制的研究 简介:(字数:17272,页数:22) 46. 工伤保险与事故预防 简介:(字数:15867,页数:20) 47. 氯气生产与储存过程中危险性分析及其预防 简介:(字数:13643,页数:23) 48. 无公害农产品的发展与检测 简介:(字数:9767,页数:16 ) 49. 环氧乙烷工业设计 简介:(字数:20472,页数:67) 50. 年产21000吨乙醇水精馏装置工艺设计 简介:(字数:13464.页数:56) 51. 年产26000吨乙醇精馏装置设计 简介:(论文字数:10089,页数:55) 52. 高层大厦首层至屋面消防给水工程设计 简介:(论文字数:14582,页数:38) 53. 某市航空发动机组试车车间噪声控制设计 简介:(论文字数:11156,页数:36) 54. 一株源于厌氧除磷反应器NL菌的鉴定及活性研究 简介:(论文字数:12064,页数:28) 55. 一株新的短程反硝化聚磷菌的鉴定及活性研究 简介:(论文字数:10316,页数:30) 56. 广州地区酸雨特征及其与气象条件的关系 简介:(论文字数:9031,页数:19 ) 57. 超声协同硝酸提取城市污泥重金属的研究 简介:(论文字数:10981,页数:27) 58. 脱氨剂和铁碳法处理稀土废水氨氮的研究 简介:(论文字数:8209.页数:21 ) 59. 稀土超磁致伸缩材料扬声器研制 简介:(论文字数:19332,页数:29) 60. 纳米氧化铋的发展 简介:(论文字数:18508,页数:39) 61. 海泡石TiO2光敏催化剂的制备及其研究 简介:(论文字数:15350,页数:35) 62. 超磁致伸缩复合材料的制备 简介:(论文字数:22379,页数:35) 63. 钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文 简介:(论文字数:35682,页数:58) 64. APCVD法在硅基板上制备硅化钛纳米线 简介:(论文字数:18638,页数:36) 65. 浅层地热能在热水系统中的利用初探及其工程设计 简介:(论文字数:34502,页数:58) 66. 输配管网的软件开发 简介:(论文字数:24729,页数:59) 67.乙二醇乙醚乙酸酯的合成及分析 (字数:17018,页数:35) 68.四(m-氯苯基)卟啉及其锰络合物的合成 (字数:15464,页数:36)

秀军 ,2 郭丽梅1# 蒋明康1 (1.天津科技大学材料科学与化学工程学院,天津 300222; 2.大庆油田化工有限公司精细化工厂,黑龙江 大庆 163411) 摘要 采用硫酸精制-碱中和-活性白土吸附-过滤的工艺流程处理废齿轮润滑油。酸洗温度40 ℃,98%浓硫酸用量为废油量的6%(质量分数);碱中和温度80 ℃,中和剂为10%氢氧化钠;吸附条件:活性白土用量为15%(质量分数),温度150 ℃,时间1 h;再生润滑油粘度40 ℃时为128 Mpa•s,80 ℃为19.2 MPa•s,凝点为-33 ℃。同时用废碱处理酸渣,采用阳离子絮凝剂处理废水。

有个范文网,应该可以吧,不行的话,去论文网看看!如果是大学毕业论文,好像免费的很少,大多需要money!

化工类毕业论文硝酸工艺

根据浓硝酸与铜反应,应该看还原产物的价态,来判断氧化性的强弱。 浓硝酸与铜反应,还原产物NO2中,氮为+4价。 稀硝酸与铜反应,还原产物NO中,氮为+2价。 他们同样把铜单质氧化为Cu2+,但浓硝酸只需要下降1价就可以了,而稀硝酸却要下降3价,当然是浓硝酸氧化性强了。

硝酸是重要基本化工原料,广泛应用于制染料、炸药、医药、塑料、氮肥、化学试剂以及用于冶金、有机合成。86%以上浓硝酸称发烟硝酸。硝酸与氨作用生成硝酸铵,它也是一种化肥,含氮量比硫酸铵高,对于各种土壤都有较高的肥效。炸药和硝酸有密切的关系。最早出现的炸药是黑火药,它的成分中含有硝酸钠(或硝酸钾)工业上制取浓硝酸(HNO3浓度高于96%)的方法有三种:一是在有脱水剂的情况下,用稀硝酸蒸馏制取的间接法,习惯上称“间硝";二是由氮氧化物、氧及水直接合成浓硝酸,称为’直硝’;三是包括:氧化、超共沸酸(75%—80%HNO3)生产和精馏的直接法。

氨氧化法制硝酸[工业制法]: 工业制法原料:NH3 ,水,空气. 设备:氧化炉,吸收塔.硝酸的工业制法历史上曾用智利硝石与浓硫酸共热制取。现改用氨氧化法制取,其法以氨和空气为原料,用Pt—Rh合金网为催化剂在氧化炉中于 800℃进行氧化反应,生成的NO在冷却时与O2生NO2,NO2在吸收塔内用水吸收在过量空气中O2的作用下转化为硝酸,最高浓度可达50%。制浓硝酸则把50%HNO3与Mg[NO3]2或浓H2SO4蒸馏而得。 主要反应为:4NH3 + 5O2 =催化剂+强热= 4NO + 6H2O [氧化炉中];2NO + O2 = 2NO2 [冷却器中]; 3NO2 + H2O = 2HNO3 + NO [吸收塔]; 4NO2 + O2 + 2H2O == 4HNO3 [吸收塔]。 从塔底流出的硝酸含量仅达50%, 不能直接用于军工,染料等工业, 必须将其制成98%以上的浓硝酸. 浓缩的方法主要是将稀硝酸与浓硫酸或硝酸镁混合后, 在较低温度下蒸馏而得到浓硝酸, 浓硫酸或硝酸镁在处理后再用.麻烦采纳,谢谢!

浓硝酸是化学药品啊,有很强的腐蚀作用,用的时候要小心!

氨基酸发酵工艺毕业论文

“氨基酸工艺学”是一门新型发酵的技术科学,以探讨氨基酸发酵工厂的生产技术为主要目的。 学习“氨基酸工艺学”的目的是使学生能运用已学过的微生物学、生物化学、化工原理和分析化学等基础知识,进一步深化与提高,来认识与解决氨基酸发酵工业生产中的具体问题;

这不是正大老师布置的论文作业们 哈哈哈啊哈哈

a、生物素缺陷型(使用生物素缺陷型菌种进行生产的时候,必须控制生物素的用量)1.作用机制生物素作为催化脂肪酸生物合成最初反应的关键酶乙酰辅酶A羧化酶的辅酶,参与了脂肪酸的合成,进而影响磷脂的合成。当磷脂合成减少到正常量的1/2左右时,细胞变形,谷氨酸向膜外漏出,积累于发酵液中。2.控制的关键必须亚适量控制生物素如果生物素过剩,就会出现只是长菌而不产酸的现象或者长菌好而产酸低。b.添加表面活性剂(吐温)或者饱和脂肪酸使用生物素过量的糖蜜原料发酵生产谷氨酸时,通过添加表面活性剂或者高级饱和脂肪酸(C16-18)及其亲水聚醇酯类,同样能清除渗透屏障物,积累谷氨酸。1.作用机制在不饱和脂肪酸的合成过程中,作为抗代谢物具有抑制作用,对生物素有拮抗作用。通过拮抗生物素的生物合成,导致磷脂合成不足,结果形成磷脂不足的细胞膜。提高了细胞膜对脂肪酸的渗透性。2.影响产酸的关键 必须控制好添加表面活性剂、不饱和脂肪酸的时间与浓度,必须在药剂添加之后C.油酸缺陷型 使用油酸缺陷型菌株进行谷氨酸发酵时,必须限制发酵培养基中油酸的浓度油酸过量时,只长菌不产酸,或者长菌好而产酸低d.甘油缺陷型 使用甘油缺陷型菌株进行谷氨酸发酵时,必须限制发酵培养基终甘油的浓度二.阻碍谷氨酸菌细胞壁的合成,形成不完全的细胞壁,进而导致形成不完全的细胞膜第一.①、作用机制添加青霉素是抑制谷氨酸生产菌细胞壁的后期合成,主要是抑制糖肽转移酶,影响细胞壁糖肽的合成。②、影响产酸的关键在生长的对数期阶段添加青霉素是影响产酸的关键。第二.物理控制方法 利用温度敏感型细胞进行谷氨酸发酵时,由于仅仅控制温度就能实现谷氨 酸的生产,所以我们把这种新工艺称为物理控制方法。F(1)突变位置(2)影响产酸的关键 在生长的什么阶段转化温度是影响产酸的关键第三、强制控制工艺的要点和实例

氨基酸发酵是典型的代谢控制发酵 ,由发酵所生成的产物 ——氨基酸,都 是微生物的中间代谢产物,它的积累是建立于对微生物正常代谢的抑制。在 脱氧核糖核酸(DNA)的分子水平上改变、控制微生物的代谢,使有用产物大 量生成、积累。 以探讨氨基酸发酵工厂的生产技术为主要目的。氨基酸发酵生产以发 酵为主,发酵的好坏是整个生产的关键,但后处理提纯操作和提纯设备选用当 否,也会大大影响总的得率。氨基酸发酵工艺学研究的对象应该包括从投入 原料到最终产品获得的整个过程,其中有微生物生化问题、生化工程问题,也 有分析与设备问题。 今后的发展是采用诱变、细胞工程、基因工程的手段选育出从遗传角 度解除了反馈调节和遗传性稳定的更理想菌种,提高产酸;采用过程控制,进 行最优化控制,连续化、自动化,稳产、高产;探求新工艺、新设备,以提高产 率和收得率;研究发酵机制等问题,以便能更好地控制氨基酸这样微生物中间 代谢产物的发酵。

  • 索引序列
  • 己二酸工艺毕业论文
  • 硝酸工艺毕业论文
  • 硫酸工艺毕业论文
  • 化工类毕业论文硝酸工艺
  • 氨基酸发酵工艺毕业论文
  • 返回顶部