首页 > 期刊投稿知识库 > 函数定义域研究论文

函数定义域研究论文

发布时间:

函数定义域研究论文

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

2.1.1伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

2.1.2Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

2.1.3,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

2.1.4用Г函数求积分

2.2贝塔函数的性质及应用

2.2.1贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

2.2.2对称性:=。事实上,设有

2.2.3递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

2.2.4

由上式得以下几个简单公式:

2.2.5用贝塔函数求积分

例2.2.1

解:设有

(因是偶函数)

例2.2.2贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

2.3贝塞尔函数的性质及应用

2.3.1贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

2.3.2贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

2.3.3为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

2.3.4贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例2.4,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,2000.5,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,1992.2.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

一、函数的起源(产生) 十六、十七世纪,欧洲资本主义国家先后兴起,为了争夺霸权,迫切需要发展航海和军火工业。为了发展航海事业,就需要确定船只在大海中的位置,在地球上的经纬度;要打仗,也需知道如何使炮弹打的准确无误等问题, 这就促使了人们对各种“运动”的研究,对各种运动中的数量关系进行研究,这就为函数概念的产生提供了客观实际需要的基础。 十七世纪中叶,笛卡儿(Descartes)引入变数(变量)的概念,制定了解析几何学,从而打破了局限于方程的未知数的理解;后来,牛顿( Newton)、莱布尼兹(Leibniz)分别独立的建立了微分学说。这期间,随着数学内容的丰富,各种具体的函数已大量出现,但函数还未被给出一个一般的定义。牛顿于 1665年开始研究微积分之后,一直用“流量”( fluent)一词来表示变量间的关系。 1673年,莱布尼兹在一篇手稿里第一次用“函数”( fluent)这一名词,他用函数表示任何一个随着曲线上的点的变动而变动的量。(定义1)这可以说是函数的第一个“定义”。例如,切线,弦,法线等长度和横、纵坐标,后来,又用这个名词表示幂,即表示 x , x2, x3,…。显然,“函数”这个词最初的含义是非常的模糊和不准确的。 人们是不会满足于这样不准确的概念,数学家们纷纷对函数进行进一步讨论。 二、函数概念的发展与完善⒈以“变量”为基础的函数概念 在 1718年,瑞士科学家,莱布尼兹的学生约翰·贝奴里(Bernoulli,Johann)给出了函数的明确定义:变量的函数是由这些变量与常量所组成的一个解析表达式。(定义2)并在此给出了函数的记号φx。这一定义使得函数第一次有了解析意义。 十八世纪中叶,著名的数学家达朗贝尔 (D’Alembert)和欧拉( Euler)在研究弦振动时,感到有必要给出函数的一般定义。达朗贝尔认为函数是指任意的解析式,在 1748年欧拉的定义是:函数是随意画出的一条曲线。(定义 3)在此之前的 1734年,欧拉也给出了一种函数的符号f(x),这个符号我们一直沿用至今。 实际上,这两种定义(定义 1和定义 2)就是现在通用的函数的两种表示方法:解析法和图像法。后来,由于富里埃级数的出现,沟通了解析式与曲线间的联系,但是用解析式来定义函数,显然是片面的,因为有很多函数是没有解析式的,如狄利克雷函数。 1775年,欧拉在《微分学原理》一书的前言中给出了更广泛的定义:如果某些变量,以这样一种方式依赖与另一些变量,即当后面这些变量变化时,前面这些变量也随之而变化,则将前面的变量称为后面变量的函数。(定义 4)这个定义朴素地反映了函数中的辨证因素,体现了“自变”到“因变”的生动过程 ,但未提到两个变量之间的对应关系,因此它并未反映出真正意义上的科学函数概念的特征,只是科学的定义函数概念的“雏形”。 函数是从研究物体运动而引出的一个概念,因此前几种函数概念的定义只是认识到了变量“变化”的关系,如自由落体运动下降的路程,单摆运动的幅角等都可以是看成时间的函数。很明显,只从运动中变量“变化”观点来理解函数,对函数概念的了解就有一定的局限性。如对常值函数 ,不解释 十九世纪初,拉克若斯( Lacroix)正式提出只要有一个变量依赖另一个变量,前者就是后者的函数。 1834年 ,俄国数学家罗巴契夫斯基(Лобачевский)进一步提出函数的定义: x的函数是这样的一个数,它对于每一个 x都有确定的值,并且随着 x一起变化,函数值可以由解析式给出,这个条件提供了一种寻求全部对应值的方法,函数的这种依赖关系可以存在,但仍然是未知的。(定义 5)这实际是“列表定义”,好像有一个“表格”,其中一栏是 x值,另一栏是与它相对应的 y值。这个定义指出了对应关系(条件)的必要性,把函数的“对应”思想表现出来,而“对应”概念正是函数概念的本质与核心。 十九世纪法国数学家柯西( Cauchy)更明确的给出定义:有两个互相联系的变量,一个变量的数值可以在某一范围内任意变化,这样的变量叫做自变量,另一个变量的数值随着自变量的数值而变化,这个变量称为因变量,并且称因变量为自变量的函数。(定义 6) 1829年 ,狄利克雷( Dirichlet)给出了所谓狄利克雷函数: y=1 当 x为有理数时; y=0 当 x为无理数时。这个函数并不复杂,但不能用解析式来表示,这一思想的提出,正是数学由过去的研究“算”到以后研究“概念、性质、结构”的转变的开端。 1837年他对函数下的定义是:在某个变化过程中,有两个变量 x和 y。如果对于 x在某一范围内的每一个确定的值,按照某个对应关系, y都有唯一确定值和它对应,则 y称为 x的函数; x称为自变量。(定义 7)这个定义的优点是直截了当地强调与突出了“对应”关系,抓住了概念的本质属性,只须有一个法则存在,使得这个函数定义域中的每一个值有一个确定的 y值和它对应就行了,不管这个法则是公式或图像或表格或其他形式;其缺点是把生动的函数变化思想省略和简化掉了。 ⒉以“集合”为基础的函数概念 函数的概念是随着数学的发展而发展的。函数的定义在数学的发展过程中,不断的改进,不断的抽象,不断的完善。十九世纪七十年代,德国数学家康托( G.Cantor)提出了集合论。进入二十世纪后,伴随着集合论的发展,函数的概念也取得了新的进展,它终于摆脱了数域的束缚向更广阔的研究领域扩大,使概念获得了现代化。 二十世纪初美国数学家维布伦( Weblan)给出了函数的如下定义:若在变量 y的集合与另一变量 x的集合之间,有这样的关系成立,即对 x的每一个值,有完全确定的 y值与之对应,则称 y是变量 x的函数。(定义 8)从这个定义开始,函数概念已把基础建立在集合上面,而前七个定义则是把基础建立在变量(数)上的。 随着时间的推移,函数便被明确的定义为集合之间的对应关系,其定义是: A和 B是两个集合,如果按照某种对应关系,使 A的任何一个元素在 B中都有唯一的元素和它对应,这样的对应关系成为从集合 A到集合 B的函数。(定义 9)此定义根据映射的概念,用“映射”观点建立函数概念,其又可叙述为:从集合 A到集合 B的映射 f: A→ B称为集合 A到集合 B的函数,简称函数 f 。(定义 10)以上三个定义,已打破数域的束缚,将集合中的元素改为抽象的,可以是数,也可以不是数,而是其它一切有形或无形的东西,如 X是所有三角形的集合, Y是所有圆的集合,则 f 可以是把每一个三角形映射成它的外接圆的映射。 对新函数定义可以这样理解:函数是一个对应(规则),对于某一范围(集合)的元素,按照这个对应(规则)确定另一个元素。这样函数概念从狭义的“变化”观点转化到较广义的“对应”观点,函数即是一个对应(规则)。 对函数概念用“对应”(“规则”)来理解比起最初阶段虽然揭示出了函数概念的实质,但它还不符合我们最低限度地使用未被定义的术语的意图。因为什么叫“对应”和怎样理解“规则”还需要定义,例如规则不同,那么是否函数也不同呢?如f(x)=x与f(x)=(1+x)-1当然是不同的规则但却定义了同一函数。 为了解决这一矛盾,二十世纪初,特别是在六十年代以后,广泛采用只涉及“集合”这一概念的函数定义,而集合作为原始概念是不予定义的,这样的定义是:设 A、 B是任意两个集合, f是笛卡儿集 A× B的一个子集,满足:①对任意的 a ∈ A,存在一个 b∈B,使得 (a,b)∈ f,②若 (a,b)∈ f, (a,c)∈ f则 b=c。则称 f为 A到 B的一个函数。记作 f:A→B。(定义11)这个定义利用“关系”这个概念,便给出了只涉及原始概念“集合”的函数的一般定义,即不需要用到“对应”,又避免了对“规则”的解释,只要集合理论适用一切数学领域,这样给出的函数定义总是适用的。它可称的上是最现代的定义了。 到此,“函数”最完善的定义(定义 11)已给出,作为数学中最基本的概念之一,已把基础直接建立在集合上面,即把函数看作是从一个集合到另一个集合的对应,它和“映射”实际上是一回事。 三、新旧两种定义的比较 比较新定义(把以集合为基础的函数定义称为新的定义方式,而以变量(数)为基础的定义称为旧的定义方式。)和旧定义,它们之间有两个重要的区别: ⑴旧定义是建立在“变量”这个基本概念上的,而新定义则建立在“集合”这个基本概念上。什么是变量呢?通常把它理解为在选定一个单位以后,可加以度量的东西,如长度、质量、时间之类,这种理解一方面太疏于笼统,只能通过举例来说明,而难于加以精确化;另一方面,由于涉及大小关系,嫌过于狭窄,无法体现应用上的普遍性。其次,即使什么是“量”的问题不存在,作为变量,它须在某一范围取值(不一定是数值),这一定范围实际上就是事先得假定的一个集合 A(它构成函数的定义域),所谓“变量取值 a”,实质上就是“ a属于 A”的一种变相迂回的说法。可见,在变量的概念中已蕴含集合的思想。 ⑵旧定义中以“因变量”为函数,而新定义中则以“对应关系”为函数。函数概念的实质,主要的并不是因变量要随自便量“变”,而是两集合之间存在某种确定的对应关系。显然,新定义更能直接地揭示出函数的实质。

看完图片你就会知道捷径的!

在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1 (2)y=|x2-1| (3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足00,又a>0,因此�0�6(x) >0,即�0�6(x)-x>0.至此,证得x<�0�6(x)根据韦达定理,有 x1x2= ∵ 0<x1<x2<,c=ax1x2�0�6(0),所以当x∈(0,x1)时�0�6(x)<�0�6(x1)=x1,即x<�0�6(x)0)函数�0�6(x)的图象的对称轴为直线x=- ,且是唯一的一条对称轴,因此,依题意,得x0=-,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-,∵x2-<0,∴x0=-=(x1+x2-)<,即x0=。二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。

论文研究领域确定

社会科学论文和自然科学论文。论文研究类型用研究领域来划分,可分为社会科学论文和自然科学论文。社会科学论文,主要是描述社会复杂现象,阐述社会发展变化规律,分析和解决社会问题而积极开展的科学研究而撰写的论文。自然科学论文,主要是描述自然现象,阐述自然发展变化,分析和解决自然科学发展存在问题而进行积极研究,而发表自己的观点和主张的文章。

1、研究方向首先要与本专业相关,是该专业下的某一领域。

2、其次选择自己较为感兴趣的方面,兴趣是最好的老师,当然也不能忘了考虑本身的实力,尽量选择在自身能力范围内,毕竟这个研究方向最后会导致论文结果的好坏,所以超出能力范围太多,就无法实现,无法得到结果。同时这个方向也要结合实际,结合当下的研究热点。最后综合考查。

一是你自己的研究兴趣点在哪里,就在哪里去寻找这方面的问题。

二是前人研究成果的深度和不足,目前尚无法解决的某方面的问题,就是我们下一步研究的方向。

三是发现别人研究成果中的错误,就是可以着手证误的研究方向。关于基础性研究方向还是实用性研究方向必须要根据需要、条件、和可能产生的效益来决定。一般来说基础性研究难度较大,成果转化为效益较难,可能涉及更好的研究条件。

确定论文的研究方向:

既是一个技术性问题又是一个学术性问题。如果是大学本科的毕业论文,论文只是对几年大学学习的一个总结和评估,要求不会太高,以通过毕业为第一要素,当然你也可以研究比较深的课题,这在时间和精力上有限制,知识储备还不足。

如果在某一小点上有所创新,有所发现就很不错了。要说真正有质量的论文还是在研究生期间所从事研究的内容。

这时除了自己化时间精力去深思以外,导师的指导是至关重要的,而此时的论文研究方向从一开始就由导师为你量身打造了,就确定了研究方向,你自己的自由度反而不大,只要遁着导师的思路早出成果就行了。

论文研究领域界定

两者之间没有区别。因为研究领域(即课题研究领域)通常指的就是研究方向(即课题研究方向)。

课题研究方向应在所研究课题历史基础上提出自己独特或者有所创新的研究方向以丰富学科知识体系。课题研究方向一般是指学生在校期间,或者相关科研工作者在申报撰写论文过程中需要明确的研究方向。

确定研究主题可以为进一步确定研究问题奠定基础。研究领域一般指研究课题所在的学术领域,或者说课题所在的对象范围。研究的主要问题,是研究领域的进一步收敛。

扩展资料:

研究领域(研究方向)的相关要求:

1、理清研究思路。通过对研究问题进行正向分析、逆向分析和化归分析等方法,理清和形成研究思路。

2、课题研究的基本方法。教育研究方法有主法和辅法。主法有观察法、调查法、文献资料法、教育实验法、经验总结法、比较研究法、个案研究法、行动研究法、反思研究法和质的研究法等等;辅法有统计法、测量法、和问卷法等等。

3、课题研究方法的使用与选择。不同类型(内容、条件)的研究课题有不同的研究方法,可以从不同角度、按照不同的标准选择研究方法。

参考资料来源:百度百科-课题研究领域

参考资料来源:百度百科-课题研究程序

参考资料来源:百度百科-课题研究方向

1、研究方向首先要与本专业相关,是该专业下的某一领域。

2、其次选择自己较为感兴趣的方面,兴趣是最好的老师,当然也不能忘了考虑本身的实力,尽量选择在自身能力范围内,毕竟这个研究方向最后会导致论文结果的好坏,所以超出能力范围太多,就无法实现,无法得到结果。同时这个方向也要结合实际,结合当下的研究热点。最后综合考查。

一是你自己的研究兴趣点在哪里,就在哪里去寻找这方面的问题。

二是前人研究成果的深度和不足,目前尚无法解决的某方面的问题,就是我们下一步研究的方向。

三是发现别人研究成果中的错误,就是可以着手证误的研究方向。关于基础性研究方向还是实用性研究方向必须要根据需要、条件、和可能产生的效益来决定。一般来说基础性研究难度较大,成果转化为效益较难,可能涉及更好的研究条件。

确定论文的研究方向:

既是一个技术性问题又是一个学术性问题。如果是大学本科的毕业论文,论文只是对几年大学学习的一个总结和评估,要求不会太高,以通过毕业为第一要素,当然你也可以研究比较深的课题,这在时间和精力上有限制,知识储备还不足。

如果在某一小点上有所创新,有所发现就很不错了。要说真正有质量的论文还是在研究生期间所从事研究的内容。

这时除了自己化时间精力去深思以外,导师的指导是至关重要的,而此时的论文研究方向从一开始就由导师为你量身打造了,就确定了研究方向,你自己的自由度反而不大,只要遁着导师的思路早出成果就行了。

研究领域主要就是填写研究的主要内容和方向,以及其他研究成果的情况概要。

研究领域一般是指研究课题所在的学术领域,或者说课题所在的对象范围。主要就是填写研究的主要内容和方向,以及其他研究成果的情况概要,即在本人研究的课题上,对别人的研究情况,有什么成果,有什么不足,加以研究和创新。

确定课题的逻辑过程:研究领域:一般指研究课题所在的学术领域,或者说课题所在的对象范围。研究主题:研究的主要问题,是研究领域的进一步收敛。确定研究主题可以为进一步确定研究问题奠定基础。研究问题:是研究主题范围内研究者具体回答或研究解决的问题。

课题研究领域与研究方向

1、教育管理与学校发展研究

(1)学校初中建设发展研究;

(2)学校人事制度改革研究;

2、德育与心理健康研究

(1)提高德育工作者队伍素质研究;

(2)新时期德育的有效方法与途径研究;

3、课程改革与教学改革研究

(1)中学生科学素养现状及培养策略的研究;

(2)校本课程的开发与管理、建设研究;

4、体育、卫生、美育与校外教育研究

(1)中学体育教学内容与方法改革的研究;

(2)中学体育课程标准与评价研究;

5、教育评价研究

(1)课堂教学评价体系研究;

(2)促进学生全面发展的评价标准和方法研究;

6、教师发展与教师教育研究

(1)师资队伍建设与可持续发展教育研究;

(2)关于研究型教师队伍建设与管理的研究;

7、教育信息化研究

(1)校园网络建设与管理研究;

(2)学校教育信息资源库统筹建设的研究;

8、奥运教育研究

(1)奥运教育与学校体育工作相融合研究;

(2)奥林匹克教育示范校建设与发展研究。

广义函数毕业论文

拓扑群及广义函数论研究在1957年以前,冯康主要从事基础数学研究。他最早的工作(没有发表)是辛群的生成子和四维数代数基本定理的拓扑证明。接着他研究殆周期拓扑群理论,这是1934年由J.冯·诺依曼(von Neumann)创始的,与酉阵表现密切相连。按照群所有的酉阵表现的多寡分出两种极端类型:极大殆周期群——有“足够多”的酉阵表现;极小殆周期群——没有非平凡酉阵表现。1936年A.韦伊(Weil)及H.弗勒登塔尔(Freudenthal)解决了极大群的表征问题,它们就是紧群与欧几里得向量群的直积。1940年冯·诺依曼及E.威格纳(Wigner)对于极小群作出了重要进展,但其表征问题一直没有解决。冯康在1950年率先对线性李(Lie)群(及其覆盖群)解决了这一问题:没有非平凡酉阵表现的充要条件是“本质上”不可交换与非紧。这一成果在后来酉表现论和物理应用中愈显出其重要性。50年代初L.施瓦尔茨(Schwartz)提出广义函数系统性理论,引起世人重视。1954年起,冯康开展这一领域的研究,发表了《广义函数论》长篇综合性论文,也含有一些自己的新成果,推动了这项理论在我国的发展。他还建立了广义函数中离散型函数(δ函数及其导数)与连续型函数之间的对偶定理。他应华罗庚教授的建议,建立了广义梅林变换理论,对于偏微分方程和解析函数论等均有应用,国外迟至60年代才出现类似的工作。有限元方法的创始50年代末60年代初,我国的计算数学刚起步不久,在对外隔绝的情况下,冯康带领一个小组的科技人员走出了从实践到理论,再从理论到实践的发展我国计算数学的成功之路。当时的研究解决了大量的有关工程设计应力分析的大型椭圆方程计算问题,积累了丰富而有效的经验。冯康对此加以总结提高,作出了系统的理论结果。1965年冯康在《应用数学与计算数学》上发表的论文《基于变分原理的差分格式》,是中国独立于西方系统地创始了有限元法的标志。该文提出了对于二阶椭圆型方程各类边值问题的系统性的离散化方法。为保证几何上的灵活适应性,对区域Ω可作适当的任意剖分,取相应的分片插值函数,它们形成一个有限维空间S,是原问题的解空间即C.Л.索伯列夫(Соболев)广义函数空间H1(Ω)的子空间。基于变分原理,把与原问题等价的在H1(Ω)上的正定二次泛函数极小问题化为有限维子空间S上的二次函数的极小问题,正定性质得到严格保持。这样得到的离散形式叫做基于变分原理的差分格式,即当今的标准有限元方法。文中给出了离散解的稳定性定理、逼近性定理和收敛性定理,并揭示了此方法在边界条件处理、特性保持、灵活适应性和理论牢靠等方面的突出优点。这些特别适合于解决复杂的大型问题,并便于在计算机上实现。自然边界归化及自然边界元方法的提出自60年代以来,有限元方法对于求解有界区域的椭圆边值问题取得了极大的成功,被广泛应用于工程技术和科学计算中,是计算数学的重大成就。但是有些实际计算问题的计算区域是无界的,用有界区域来近似无界区域时,为达到所需的精度,会使计算量大大增加,边界元方法是解决此问题的一种有效途径。关于对微分方程作边界归化的思想,早在上一世纪就已出现,但应用于数值计算却是本世纪60年代才开始,这就是边界元方法,即将微分方程归化为边界上的积分方程。由于归化的方法不同,各种边界元方法的数值效果也不尽相同。冯康根据这类问题的物理特性,引用阿达马(Hadamard)型超奇异核,提出自然归化的概念,即通过自然归化后,能量不变,从而保持了问题的本质不变。在这个概念下,他提出了自然边界元方法。该方法除所有边界元方法共有的优点外,还具备许多独特之处:由于通过自然归化后能量不变,使原来椭圆型边值问题的性质都保留,从而保证了自然积分方程的解的存在性、唯一性及稳定性,并且也保证了与有限元方法自然而直接地耦合,由此形成一个有限元与边界元兼容并蓄而自然耦合的整体性系统,能够灵活适应于大型复杂问题,便于分解计算。这是当前与并行计算相关而兴起的区域分解方法的先驱工作。作为特例,冯康对亥姆霍兹(Helmholtz)方程建立了与经典的无穷远处的索墨菲尔德(Sommerfeld)辐射条件相对应的有穷远处的积分型辐射条件,具有理论与应用的价值。冯康倡导的自然边界元方法被国内外专家称为当今国际上边界元方法的三大流派之一,这一方向已由他的学生和其他学者在继续发展。哈密顿体系哈密顿算法的创立经典力学有3种等价的数学形式体系:牛顿(Newton)体系、拉格朗日(Lagrange)体系、哈密顿(Hamilton)体系,其中哈密顿体系具有突出的对称形式,一直是物理学理论研究的数学工具。一切守恒的真实物理过程都可以表示为哈密顿体系,无论是经典性、量子性或相对论性的,无论自由度数为有限或无限,总能表现为适当的哈氏形式。哈氏体系的数学基础是辛几何。辛几何是现代物理和力学的基础,它与欧氏几何一样起着重要作用。哈密顿体系的一个重要问题是稳定性问题,在几何上的特点是它的解在相空间上是保面积的,其特征方程的根是纯虚数的。所以不能用经典的渐近稳定理论来研究它们。长期以来,国际上对于这一具有重要物理意义的哈密顿方程的计算方法几乎是空白。这种状况与哈氏系的普适性与重要性相对照是很不相称的。冯康于1984年在微分几何和微分方程国际会议上发表的论文《差分格式与辛几何》,首次系统地提出哈密顿方程和哈密顿算法(即辛几何算法或辛几何格式),提出从辛几何内部系统构成算法并研究其性质的途径,提出了他对整个问题领域的独特见解,从而开创了哈密顿算法这一富有活力及发展前景的新领域,这是计算物理、计算力学和计算数学的相互结合渗透的前沿界面。以中国科学事业发展为己任冯康由于在抗战初期患骨结核,并因在困难环境下失医,使脊椎致残,给他的生活带来过不少折磨和痛苦,可是他硬顶了过来。凡与他接触或共事的人都无不为他那种为祖国科学事业不倦的孜孜追求的精神所折服。他对自己的生活无所求,想到的、做到的都是科学事业。尽管他早已在1965年就取得了创始有限元法的国际公认的重大成果,但是并不满足。他的强烈的进取心促使他一直走在世界计算数学队伍的前列。冯康学识渊博,对于物理学、数学、计算机科学等领域都有较深的知识。在科学研究上,他总是能把握住事物的本质,运用辩证法进行分析,发现和抓住在理论上和应用上都有广阔的发展前景的课题,提出独到的思想见解,并应用过硬的基本功去解决具体困难,成功地开创新方向、新道路,开辟一个又一个有重要实际意义的新领域,带领一批又一批人在新方向上做出卓越的贡献。在科研工作中,他提倡理论联系实际和对科学的严谨态度。他对于理论上的问题一丝不苟,对于每提出的一种计算方法都是在实际计算中检验,对于经过考验的好的计算方法都努力推广使用,使其变为生产力,为四化建设服务。他不仅自己身体力行,而且对于科研人员也是这样要求。2008 年12 月15 日,国家主席胡锦涛在纪念中国科协成立50 周年大会上发表讲话时说:“我国广大科技工作者勤于思考、勇于实践,敢于超越、不懈探索,无私奉献、团结协作,在短短十几年间,创造了一个又一个科技奇迹。我们取得了有限元方法、层子模型、人工合成牛胰岛素等具有世界先进水平的科学成果……这些重大科技成果,极大增强了我国综合国力,提高了我国的国际地位。”有限元方法,被列为众多科学成果中的第一位,表明了国家对冯康和他的团队所做出的重大贡献给予的充分肯定。

泛函分析研究中华人民共和国成立之前,泛函分析在中国还只是个别数学家的科研课题,它作为数学学科的一个二级分支学科而有计划地加以发展起始于50年代中期,中国科学院数学研究所是发展的中心之一。其时,田方增与关肇直合作的《赋范环论》,冯康的《广义函数论》等的发表标志着数学研究所对泛函分析学科开始了有计划的、系统的学术科研活动。《赋范环论》共有四章和两个附录,田方增继续他在法国留学时对群上调和分析的研究写了第四章:群代数,和附录2:局部紧空间上测度——哈尔(Haar)测度,按他的学术观点论述了N.布尔巴基(Bourbaki)的一些概念。1956年田方增随中国泛函分析最早创业者南京大学曾远荣教授同赴莫斯科出席“全苏泛函分析学术会议”回来后,在《数学进展》发表了《记参加1956年全苏泛函分析及其应用会议的经过》一文,系统地评介了当时苏联泛函分析学科在理论上和应用上的科研学术成就,在学术上对中国泛函分析初期的发展起了一定的影响。在田方增和关肇直、冯康的合作下,中国科学院数学研究所于1956年招收了第一批泛函分析学科的研究实习员,随后又大批地接收了高校来的进修人员。他们分别在开设的拓扑向量空间、赋范环、测度与积分、线性算子理论、广义函数理论等等一系列学术讨论班上系统地向青年人讲授当时国际泛函分析学界(主要是苏联、法国、东欧学术界)的学术成就、最新学术进展及问题。田方增还关心数学的认识问题,曾将A.莫斯托夫斯基(Mostowski)的一篇关于数学基础的研究现状的文章译成中文介绍给中国数学界。泛函分析学科在中国科学院数学研究所几乎一开始就是基础理论与应用并重地发展。早期有数值方法的研究。按科学规划的精神,从1958年起数学所泛函分析学科强调其发展要侧重于与方程、物理、高尖科技和国民经济建设之联系。为此,田方增、关肇直常与吴新谋、张宗燧等合作,使数学所内泛函分析的发展始终注意与微分方程及现代数学物理的联系,曾联络在京一些单位的物理学家,先后组织了量子场理论、粒子迁移理论和电磁波理论中数学问题之研究等学术讨论班。60年代初田方增在中国科学技术大学数学系开设过“粒子迁移理论中的数学问题”之专门化课,从此他以主要的精力放在“粒子迁移理论”的数学基础理论之研究上直至70年代中后期。这期间他撰写的学术论文为发展中国在这一领域的数学研究作出了重要贡献。田方增与关肇直一起成功地在中国开辟了应用泛函分析的一个重要领域——粒子迁移理论的数学基础及问题之研究。70年代初开始,田方增在考察了当时国际上,特别是西欧、苏联和美国的学术动向后,结合中国的实际,选择了非线性泛函分析来开拓室里的学术方向。在1978年成都第三届全国数学代表大会的分组会上,田方增作了题为《非线性泛函分析国外近况简述》的报告,阐述和分析了非线性泛函分析的产生、发展及当前国际上主要的科研方向,它在非线性分析中的地位和作用,及在偏微分方程边值问题和数值分析上的应用等。紧接着他又在1979年济南的第二届全国泛函分析学术会议上作了包括“稳定性理论”在内的《关于歧点理论研究情况分析》的学术报告。就在这次济南会议上,中国数学会组织与会代表协商成立了由关肇直、田方增、江泽坚、夏道行4人组成的“全国泛函分析学科领导小组”,下设线性算子理论、空间理论和应用泛函分析、非线性泛函分析3个学术大组。田方增分工负责非线性泛函分析学术大组的工作直到1990年。此期间,田方增在中国科学院研究生院开设非线性泛函分析课,在研究室内指导非线性泛函分析方向的研究生,并组织和领导了6次全国非线性泛函分析学术会议,撰写了《歧点理论》、《非线性算子的类型和性质》、《不动点理论的几个方面》等专题报告。对中国非线性泛函分析的进一步发展起了介评和导向的积极作用。1985年7月,年逾古稀的田方增作为中国知名的泛函分析学科的开拓者之一,应邀去香港出席“东南亚数学联合会区域性分析学会议”,并代表中国出席会议的代表在大会上致词,作了题为《Some Advances in Nonlinear Functional Analysis in Beijing》的学术报告。基本理论的研究第二次世界大战期间,原子武器的问世激发了中子物理和核反应堆物理的蓬勃发展,一类描述中子在核物质中运动规律的积分-微分型中子迁移方程成为国防尖端科研的课题,它是描述分子分布的动力学理论的玻尔兹曼(Boltzmann)方程的一种特殊的线性化形式。在中国自60年代开始,这类方程由定量研究进入基础性的数学定性研究,田方增就是开创此类定性研究的开拓者之一。1960年中国科学院数学研究所与二机部401所协作成立的“125任务”组就是中国第一个定性地研究粒子(中子)迁移方程基础理论的科研小组(田方增是此组的负责人之一)。白手起家难度不小。田方增为迅速掌握和研究美、欧、苏关于研究中子迁移方程的数学思想、理论和方法,在讨论班上向年轻人系统地讲解和分析国际已有学术成果及存在的问题,组织并指导年轻人攻关。田方增于1962—1964年在中国科学技术大学为数学系59届高年级开设了包括辐射迁移和中子迁移在内的“粒子迁移理论中的数学问题”的专门化课。这是中国高校首次开设这样的专门化课程,田方增为此撰写了十多万字的讲义并指导学生们在这一方向上的毕业论文。他于1963-1964年发表的《不变嵌入原则与迁移问题》及《球几何中子迁移方程问题谱的性质和齐次初始问题解的渐近性》是中国最早的两篇关于粒子迁移理论定性的数学研究的学术论文。前一篇是将源于天体物理的不变嵌入原则如何在数学上发展为求解特殊的迁移问题的论述;后一篇将在美欧刚出现不久的关于中子迁移方程结构性理论研究的有限迁移介质的线性算子半群理论法和无限迁移介质的特征线法两大派理论统一到球形迁移介质的研究的论证,这篇学术论文对中国早期关于中子迁移方程定性理论研究的方向产生了较大影响。迁移方程的结构复杂,对一般情况严格求解至今仍是非常困难的问题,加之数值计算之需要,因而从理论和应用两方面来说各种近似求解法从一开始就是讨论问题的重要手段。然而,众多行之有效的近似求解法大多数长期以来没有建立合理性的数学论证。70年代,田方增先后发表了《非齐次迁移方程的时间上离散化解法》和《不稳定态迁移方程的弱解及有限元素法》的学术论文,论证了非齐次方程时间离散化解法的合理性,率先在中国将J.利翁(Lions)的弱解概念加以发展而用于迁移方程,与有限元素法结合讨论非定态方程有限元逼近的可行性问题。今天,中国在迁移理论的数学基础和问题之研究,在纯数学方面已深入到巴拿赫(Banach)空间一类无界的、其豫解算子非紧的非对称线性算子的构造性理论的研究,从应用方面已发展到对符合某种守恒规则,各种量按统计(几率)法来确定的种种动态或定态现象(如粒子迁移现象、生态平衡现象、人口经济问题等等)所形成的积分-微分型基本方程的正、反两方面数学问题之研究。田方增尽管自70年代中后期已将主要精力放在非线性泛函分析之研究上,但仍坚持倾注部分精力于迁移方程。约4万字的《迁移方程问题的泛函-解析法》已早玉成。此文在泛函分析基本理论和方法的框架下,囊括了线性和非线性迁移方程边值问题、边界初值问题的解法及解的性质等的研究。此文长期被他自己扣住未发表,希冀更加完善,使此文能体现中国在这一学术领域的学术成就和学术思想。

案例研究论文定义

1.目的性:案例的写作可以体现出理论与实践的有机结合,有利于培养学生运用所学的理论分析实际问题、解决实际问题的能力。2.客观性:案例是基于事实的,是对实际发生的事情的记录和描述,不能凭空杜撰与虚构,也不能掺杂有案例写作者个人的主观判断或主观臆想。3.相关性:尽管案例是对管理情境的描述,但不是随意的描述,它与管理类课程所涉及的理论相关,就是说,案例必须能说明某个管理问题,不能单纯描述环境,更不能写成与管理无关的事实的堆积。这就要求写作案例的同学必须熟悉有关理论,学过相关的课程,以便能运用相关理论对事实、情境等进行分析和决策。4.拟真性:案例十分接近真实情况,可以说,实际是什么样子,案例写出来就是什么样子,在案例中,信息都是以半成品状态提供的,而不是“完备清楚、井然有序、一目了然”的,一些数据、素材需要读者做一定的加工、推导和分析;案例中还可以包含有一定的无关信息;而且,有些决策所必需的信息可能又是不完备的。总之,高度的拟真性才能使读者思考、分析、判断、比较、决策。这也正是案例的优点。5.灵活性:案例在写作形式上是灵活的,可以按照事实发生的时间顺序写,也可以按照中心下面的分中心设置小标题写;在内容的表现手法上也是灵活的,可以有白描、叙述,也可以有对话、争论,还可以有数据、表格、公式。总之,只要是为了说明中心和主题,写作形式和表现手法可以不拘一格。这也是为什么案例这种形式尤其适用于有丰富实践经验的学生来写作。

个案研究论文又称案例分析论文,是以一个或几个案例为线索,分析论文主要的观点。一、客观分析论文要采用正确的理论方法对问题进行客观和深入的分析,避免仅基于自身的管理实践经验进行主观评价;二、实事求是案例是实际发生的事情的记录和描述,不能凭空杜撰与虚构,不能参杂个人的主观判断或臆想。描述案例时不要加入自己的想象、观点和评论,要避免空洞或泛泛而谈,不要拼凑字数。

  • 索引序列
  • 函数定义域研究论文
  • 论文研究领域确定
  • 论文研究领域界定
  • 广义函数毕业论文
  • 案例研究论文定义
  • 返回顶部