首页 > 期刊投稿知识库 > 晶体管振荡器毕业论文

晶体管振荡器毕业论文

发布时间:

晶体管振荡器毕业论文

时钟芯片和晶振是不同的。时钟芯片是保存时间和计时用的。晶振是晶体振荡器的意思,CPU依照振荡脉冲进行逻辑运算。晶振是CPU的必备器件。而时钟芯片不是必须的。

振荡器的工作原理:

主要有由电容器和电感器组成的LC回路,通过电场能和磁场能的相互转换产程自由振荡。要维持振荡还要有具有正反馈的放大电路,LC振荡器又分为变压器耦合式和三点式振荡器,很多应用石英晶体的石英晶体振荡器,还有用集成运放组成的LC振荡器。

由于器件不可能参数完全一致,因此在上电的瞬间两个三极管的状态就发生了变化,这个变化由于正反馈的作用越来越强烈,导致到达一个暂稳态。暂稳态期间另一个三极管静电容逐步充电后导通或者截止,状态发生翻转,到达另一个暂稳态。这样周而复始形成振荡。

苏州海思源

使每个指令的时间脉冲一致

由电容和电感器组成的LC回路通过电能和磁能的转换实现自由振荡。为了保持振荡,需要一个带正反馈的放大器。LC振荡器分为变压器耦合振荡器和三点振荡器,许多石英晶体振荡器采用石英晶体,以及集成运放组成的LC振荡器。

由于器件的参数不可能完全相同,所以在接通电源后,两个三极管的状态会立即发生变化,由于正反馈作用越来越强,会进入暂态稳定状态。在暂态稳定状态中,当另一个三极管的静电容量逐渐充电后,会发生导通或截止,状态会翻转,达到另一个暂态稳定状态。等等,等等等等。

扩展资料:

任何带正反馈的放大器都必须满足一定的条件才能自行振荡。当电源刚刚接通时,振荡回路中存在各种微弱的电干扰(如接通电源后电路中立即产生的非常窄的脉冲,放大器内部的热噪声等)。这些电子干扰包含多种频率成分,可以作为放大器的初始输入信号。

自频率选择网络由LC并联谐振回路,只有分量的角频率LC谐振角频率的循环可以生成大量的反馈电压通过反馈网络和反馈放大器的输入端,而其他频率的信号抑制。

如果在无穷大时,反馈到输入端“与原输入电压同相位”且振幅较大,则振荡电压的振幅将通过一个大线性和反馈的连续周期不断增大。这样,就可以利用正反馈从零开始构建输出振荡信号。

高频振荡器毕业论文

如果说哪种正弦波形式是设计高级美豆片信号悠闲的话,我认为还是做技术部门的比较好。

文章《机械类毕业论文》正文开始>>摘 要:综合运用了PI控制器,PWM控制器等 现代 工业 控制常用的控制部件及相关设计方法。主要介绍了直流电动机PWM控制系统原理,设计了调速系统,分析了直流脉宽调速系统的机械特性,最后建立了PWM控制与变换器的数学模型。关键词:调速;直流电动机;PWM控制;PI控制器1 直流电动机PWM控制系统1.1直流电动机PWM控制系统原理。PWM控制技术一直是变频技术的核心技术之一。它通过分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。直流电动机PWM控制系统有可逆和不可逆系统之分。可逆系统是指电动机可以正反两个方向旋转;不可逆系统是指电动机只能单方向旋转。对于可逆系统,又可分为单极性驱动和双极性驱动两种方式[1]。这里只研究双极性驱动。1.2 H型双极性可逆PWM驱动系统控制原理。“H”型是双极性驱动电路的一种,也称为桥式电路。如图1所示。其电路是由四个开关管和四个续流二极管组成,单电源供电。四个开关管分为两组,V1和V4为一组,V2和V3为另一组。同一组的开关管同步导通或关断,不同组的开关管的导通与关断正好相反。在每个PWM周期里,当控制信号Vi1高电平时,开关管V1和V4导通,此时Vi2为低电平,因此V2和V3截止。电枢绕组承受从A到B的正向电压;当控制信号Vi1为低电平时,开关管V1和V4截止,此时Vi2为高电平,因此V2和V3导通,电枢绕组承受从B到A的反向电压,这就是所谓的“双极”。由于在一个PWM周期里电枢电压经历了正反两次变化,因此其平均电压U0可以用下式决定:U0=(■-■)US=(2■-1)US=(2a-1)US(1)可见,双极性可逆PWM驱动时,电枢绕组所承受的平均电压取决于占空比α大小。当α=0时,U0=-US,电动机反转,且转速最大;当α=1时,U0=US,电动机正转,转速最大;当 时,α=1/2时U0=0,电动机不转,但电枢绕组中仍然有交变电流流动,使电动机产生高频振荡,这种振荡有利于克服电动机负载的静摩擦,提高动态性能。2 调速系统的设计对于一个控制系统而言,最关键的是控制器的设计,控制器设计的好坏关系到控制系统性能的优劣。控制器要求实时性强,通用性强,具有较强的智能,在满足性能指标的前提下应尽可能的简单。PI控制器相当于在系统中增加了一个位于原点的开环极点,同时也增加了一个位于S左半平面的开环零点。位于原点的极点可以提高系统的型别,以消除或提高系统的稳态误差,改善系统的稳态性能。而增加的负实零点则用来提高系统的阻尼度,缓和PI控制器极点对系统稳定性产生的不利影响。只要积分时间常数Ti足够大,PI控制器对系统稳定性的不利影响可大为减弱。在控制系统中,PI控制器主要用于改善控制系统的稳态性能[2]。闭环调速系统的转速和电流调节器都采用PI调节器。采用PI调节器的自动控制系统。从传递函数看,自动调节系统为:■=WP1(S)=KP■=KP+■(2)U1可分成比例部分U1P,和积分部分U1I,其中,比例部分与偏差成正比积分部分同偏差的积分有关,把两部分加起来,就是调节器的输出信号U1。当偏差信号ε是阶跃信号时,比例部分会突然加大,而积分部分则按线性增长,经过一定时间后,U1输出达到限幅值。而实际系统中,偏差信号ε只是一开始突跳,随着输出信号USC的增长,偏差信号ε便逐渐降低,U1是否能够升到限幅值,就要看U1的增长和ε的衰减哪一方更快。如果调节对象的时间常数远大于调节器的时间常数,则ε下降较慢,由于调节器的积分作用,尽管在下降,U1仍继续增长,在ε衰减到零以前U1还来得及升到限幅值[3]。如果调节对象的时间常数较小,则ε衰减较快,当积分量还来不及把U1抬高到限幅值以前,ε已经衰减到零,U1也就不能再增长,这时积分器不会饱和。在动态过程中,PI调节器输出电压U1是否饱和对系统的输出波形很有影响。若U1一旦饱和,只有ε变负,即USC>Usr时,才有可能使它退出饱和,因此 必然超凋。3 直流脉宽调速系统的机械特性由于采用了脉宽调制,严格地说,即使在稳态情况下,五金加工脉宽调速系统的转矩和转速也都是脉动的[4]。所谓稳态,是指电动机的平均电磁转矩与负载转矩相平衡的状态,机械特性是平均转速与平均转矩(电流)的关系。采用不同形式的PWM变换器,系统的机械特性也不一样。对于双极式控制的可逆电路,电流的方向是可逆的,无论是重载还是轻载,电流波形都是连续的,因而机械特性关系式比较简单。US=Rid+L■+E(0≤t

正玄波动波振器形式是设计高精度高低频现号源的优先选择,这是因为郑轩震荡器的声波,不容易失真

先剥了一个正岩气的形式,那是设计高精度偏低,品性好,新的一优先优先

正弦波振荡器的毕业论文

1、正弦波振荡器是一种不需外加信号,能自动将直流电能转换成具有一定频率、一定幅度和一定波形的交流信号的自激振荡电路。正弦波振荡器要产生稳定的正弦波振荡,电路必须要满足振荡的起振和平衡的振幅和相位条件,实现放大→选频→正反馈→再放大,不断自激,产生输出信号的过程.2、相位平衡条件要产生自激,需要满足相位平衡条件假设:φA是放大电路的移相,φF是反馈网络的移相。那么,φA + φF = 2nπ (n = 0,1,2,…)3、起振条件另外,相位相同,仅仅是自激的条件之一,若电路的总增益小于1,每一次扰动经过回路一次就被减小一次,最后输出将降为零,不能振荡。因此,另外一个重要条件就是,总增益应该大于1。4、幅值平衡条件总增益大于1,可以产生振荡,但是,输出信号会越来越大,最后收器件电源电压限制,输出被限幅,输出波形会有畸变。因此,幅值平衡条件是总增益=1。

那种数学,我正在进行时世纪的工艺礼品就是写好优先选择个人觉得这样的顺序可以做好,the you want for the you要好的一个那个有网络。

高2物理课本上写得很明白,自己看去啊.

正玄波动波振器形式是设计高精度高低频现号源的优先选择,这是因为郑轩震荡器的声波,不容易失真

震荡计步器毕业论文

笔者是一个文科教育专业在读学硕研究生,本科英语,在学院里担任招生工作,因为最近很多考研er纷纷问我研究生生活的问题,被问得多了,就想不如写个我个人的体验贴,希望能给文科某些相关专业的考研er参考。个人建议,如有不同意见,欢迎讨论。 虽然我知道大家很多人在读研究生之前曾经听过学长学姐口口声声地“研究生生活跟本科很不一样啊!” 但到底是哪些地方不一样?这些地方又是如何影响你的整个生涯规划的? 相信很多人都选择闭目塞听,毕竟考研大军的很大一部分是由就业压力引导的,我不是说考研党都不是实践派,当然也有笔者这种以为自己是学术派,上了研之后发现不是那么简单的苦逼狗。所以,最近我强烈觉得如果我在考研前有了以下的觉悟,我依然会读研,可适应期便会大大缩短: 1. 如果你学力一般,研究生最好不要转专业,学习能力真的很强的学霸除外。 因为首先, 研究生的课程不会重修本科期间的知识 ,所以专业课的知识你要恶补,但通常时间不等人,因为通常在你还想着看书补知识时,研究生期间各种各样的项目已经要求你的全身投入了。就算你不参加项目,光是平时的作业就能把你压死。对, 研究生作业量完全大于本科! 这点之后笔者会详说,我和我的几个闺蜜都是苦逼非凡的转专业狗。大家一定认为英语转教育很easy吧!经济转到金融很easy吧!工商管理转企业管理很轻松嘛! Absolutely not!一开学我们就啪啪打脸,直接懵逼,为什么?请看第二条。 2. 研究生的学力投入普通级别基本为80h ,你没有渣的可能! 一个误区一定要纠正:读研了就不上课或者课很少!trust me!这又是家长老师为了激励你考研编的谎言,其效力想到与“等你考上了大学就可以好好玩了,哦呵呵呵呵~” 我不想打击你们,但文科博士还要上课,还要上政治课。。。 就我们学院来说, 研一的课时量跟本科一周的课时量不相上下,但是要求的思考投入度和时间投入度确是本科的4倍( 我是学渣,学霸往上)也就是说,我们一周上一节2h的教育研究方法,我们下去不管是读文献、做paper、做实践作业的时间绝对大于8h。每门课都基本如此,我们学院研一一周8节课,正常上课时间为16h,可实际投入时间为64h+16h=80h,一周为除去6h睡觉时间(相信我6h是太公道的研狗睡觉时间)上课时间为168-6×7-2×8=110. 这样一周的空闲时间是30h,平均一天的空闲时间为接近4h,还有三餐和上厕所洗澡锻炼,所以想出去浪的只能呵呵! 3. 你觉得你读研期间可以安心看书做研究么?我祝我自己也可以这样! 如果你觉得本科浮躁,那读研很多人就更浮躁 ,尤其是文科的很多专硕,完全是国家在就业导向上造出的产物,其实大部分时间都是在各种实习。学硕除了一心想要读博的同学还好点,其他人也被就业压力时时紧逼,所以实习、项目神马的是绝对不能少的! 然而这些会极大的消减我们读书的时间,读书不够,毕业论文先不说,作业就做不出来。就如我和几个同样转专业的闺蜜诉苦,没有做paper时没哭过的,因为写不出。。。所以只能消减睡眠时间做作业,在DDL期间基本每天上床都两点了,然后第二天还要7点起来上班,因为po主还在学院兼职教学秘书。。。长期这样,我和几个闺蜜的身体也都出现了大大小小的问题,所以现在健身跑步和站立的时间必不可少! 4. 毕业论文你同样也没有渣的可能,否则没有学位证三年时间相当于白费了! 与本科一样,硕士研究生毕业时有毕业证和学位证, 毕业证基本不挂科学分修够就有,可学位证必须毕业论文答辩通过才有 ,这个答辩真的不是像本科那样能自圆其说即可的哦少年少女们! 笔者因为工作原因担任过两届研二开题答辩和研三毕业答辩的答辩秘书,其功能类似于书记员。我可以拍着我的平胸担保,其过程非常极其的可怕! 推迟答辩、答辩不过的是家常便饭! 有位学长,已经在香港某大学有了硕士学位,可论文还是被推迟答辩,推迟答辩就意味着学位证推迟(对找工作非常有影响,因为大部分正规单位都要求报道时出示学位证原件)。一位学姐,论文直接被挂掉,当时她就简直差点就给答辩委员会的三个老师跪下了......可答辩秘书的另一个功能是公证人,已经做出的判断不能推翻...... 而且在教室外等待答辩委员会给出的评价的那10-15min真的是度日如年,虽然不是我答辩,看着那些学长学姐周围的空气都要凝结了似的。最后写上结果的我实在不知道怎么安慰哭成泪人的学姐,只好默默的走人。 5. 导师至关重要, 一些选导师的干货建议 导师的重要性我相信大家都知道,所以研一一进学校最好就跟本学院的教学秘书啊,学长学姐多套套近乎,多问点各位老师人品、性格方面的问题, 最好能找到一位喜欢八卦的学长学姐,这样比较能快速的断定一个老师的喜好和人品 。比如有些老师喜欢学生给她在节日送礼啊、有些老师对学生指导欠缺,一个月才能见一次啊,这种导师当然能避则避,不然不愿认怂的你最坏可能就是下一个南京邮电那位学长的命了。 当然也有很多积极的八卦,比如有些老师对学生要求很严,每月都要交读书报告,开研究进度会(这种学渣可能就绕道了哈哈);有些老师对学生很和蔼,喜欢邀请学生到自己家做客什么的;或者功利一点,有些老师人脉广,对以后工作可能有帮助之类的。最好都提前了解,然后建议先下手为强,可以上课时积极一点, 跟老师e-mail沟通下 。因为热门的导师都会有很多人报,他们自己也会提前在心里做个比较评估,如果沟通时礼貌,基本就没问题。 其他一些在读研时的建议: 1. 注意身体,不管是文科还是理科 。 文科生一看文献一下午就过去了,理科生做起实验来更是每个准,容易久坐,所以很多研究生腰啊、心脏都会比本科时差。在学校里办个健身卡,或者一周去操场跑四次步,下个久坐APP,或者买个手环,坐了一个小时就起来活动一下,每天也开个计步器多走路多骑车。 觉得大家现在的健康观念都不错,办卡的人也很多,但有时还是懒,所以 PO主找了个健身partner ,互相督促,效果不错。恋爱狗也别总坐着聊天,可以俩人一起去健身,上yoga课也挺好; 2. 不管你选择实践还是学术,都要 继续找寻真正的你,不断增强自己的信心 要问我读研和本科毕业时的最大不同,我觉得是你有了更多免费尝试失败的机会, 越多尝试,你越能找到你内心真正的需要 ,随之而来的信心也会增长,与本科时的懵懂相比,你能真实感到自己的成熟与进步; 3. 勇敢拒绝别人,把时间用在自己喜欢的事情上 我的建议是:如果别人要求帮忙的事确实会长时间占用做自己事情的时间,可以 真诚勇敢的拒绝 他,告诉他你现在的时间为什么要放在这件事上,这件事对你的重要性,并且表示在空闲时乐于帮忙。这样相信别人也不会对你有什么怨言。反而是你要是揽了不属于你职责范围内的工作,还没干好的话,老师和同学是一定会批评你的。所以, 懂得自己的边界,量力而为 ,时间的平衡分配很重要。 最后还是要强调,读研绝不是某些读书无用论口中的浪费时间。在读研时你会体会到很多次想放弃的时刻,但别给自己太大压力,做到问心无愧结果就不会太差。在这一次次的挑战中,你绝对能感到自己武力值的猛升。 暂时只能想起这么几点感受最明显的了,希望对各位学弟学妹有所帮助,如果各位还有其他问题或不同意见,可以在底下评论,一起讨论。

计步器毕竟不是人工数数,没办法查看最真实的情况。一般的手机,手表,手环计步都是有局限性的,只要满足既定条件,就可以计算步数,比如震动,重力感应等等。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。

一般的手机,手表,手环计步都是有局限性的,只要满足既定条件,就可以计算步数,比如震动,重力感应等等。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。一般的手机,手表,手环计步都是有局限性的,只要满足既定条件,就可以计算步数,比如震动,重力感应等等。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。

因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。因为坐车的时候,车子的震动也会导致手机的步数增长,因为别人一直拿着手机,在车上玩手机手机就会一直在动,步数就会一直增加,所以你看到的就是别人的步数一直在变化。

振荡热管换热性能试验研究论文

01) Y.H.Cheng,Y.Zou,L.Cheng,W.Liu,Effect of the Microstructure on the Properties of Ni-Pdeposits on Heat Transfer,Surface&Coatings Technology,doi:10.1016/j.surfcoat.2008.10.03902) YanHai Cheng,Yong Zou,Lin Cheng,Wen Liu,Effect of the microstructure on the anti-foulingproperty of the electroless Ni-P coating,Materials Letters,62(2008) 4283-428503) L.Cheng,T.Luan,W.Du,M.Xu,Heat transfer enhancement by flow-induced vibration in heatexchangers,Int. J. Heat Mass Transfer,doi:10.1016/j.ijheatmasstransfer.2008.05.03704) Cheng lin,Xu mingtian,Wang liqiu,From Boltzmann transport equation to single phase lagging heat conduction,Int. J. Heat Mass Transfer,doi:10.1016/j.ijheatmasstransfer 2008.04.00405) Cheng lin,Xu mingtian,Wang liqiu,Single and dual phase lagging heat conduction models in moving media,ASME J. of Heat Transfer(In Press),200806) 程林,许明田,王立秋,单相滞热传导温度场的振动现象及其热力学基础,《科学通报》,2008,53(6):732-736。07) Y.H.Cheng,Y.Zou,L.cheng,W.Liu,Effect of complexing agents on properties of electrolessNi-P deposits,Materials Science and Technology,2008,Vol.24,No.4,P:457-46008) WANG Xue-dong,LUAN Tao,CHENG Lin,XIAO Kun,Research of Boiler Combustion Regulation for Reducing NOx Emission and its Effect on Boiler Efficiency. Journal of Thermal Science Vol.16,No.3 270-276,2007.09) J.Fan, L.Q.Wang and L.Cheng,Forced Convection in Rectangular Micreochannels: Electrokinetic Effects. International Journal of Nonlinear Sciences and Numerical Simulation, Vol.8, No.3,2007,P:335-34510) J.Fan, L.Q.Wang and L.Cheng,Electrokinetic Effects on Flow and Heat Transfer in Parallel-Plate Microchannels, International Journal of Nonlinear Science and NumercialSimulation.Vol.8, No.3,2007,P:359-37411) Liqiu Wang,Yuxiang Zhang,Lin Cheng,Magic microfluidic T-junctions: Valving andbubbling,Chaos, Solitons & Fractals 2.042,200712) Zheng, Jizhou;Cheng,Lin;Du,Wenjing Dynamic characteristics of elastic tube bundles withcomponent mode synthesis method,《机械工程学报》,v43,n7,July,2007,p 202-20613) Luan,Tao;Cheng,Lin; Cao, Hongzhen; Qu, Yan Effects of heat sources on heat transfer ofaxially grooved heat pipe,Huagong Xuebao/Journal of Chemical Industry and Engineering(China), v 58,n4,April,2007,p 848-85314) Liqiu Wang,Ophelia Pang,Lin Cheng,Bifurcation and stability of forced convection intightly colied ducts:stability Chaos, Solitons and Fractals 27(2006) P:991-100515) Cheng Lin, Yun Heming. The Optimized Analysis of Electronics Cooling by CFDMethods(ICNMM2006-96074). 4th international conference on Nanochannels, microchannels andminichannels. June 19-21, 2006. Limeric Ireland16) Yun Heming, Cheng Lin, Wang Liqiu and Chen Binjian. Numerical Computation of RoughnessEffects on Heat Transfer and Hydrodynamic Characteristics in Microchannels(ICNMM2006-96076). 4th international conference on Nanochannels, microchannels and minichannels.June 19-21, 2006. Limeric Ireland17) Yun Heming, Cheng Lin, Wang Liqiu and Zhang Shusheng. Numerical Simulation of Heat andFlow of Liquid Through Minichannels(ICNMM2006-96078). 4th international conference onNanochannels, microchannels and minichannels. June 19-21, 2006. Limeric Ireland18) Yun,He-Ming;Cheng,Lin;Chen,Bao-Ming;Du,Wen-Jing Optimization analysis on the heatdissipation of electronic elements,Journal of Engineering Thermophsics,2006 Vol.27(3),P:496-49819) Yan Fayi,Cheng Lin,Numerical Algorithms for Virtual Visualization of Fluid Flow inPipeline System 2006 IEEE International Conference on Industrial Informatics Sf-00036120) Liqiu Wang, Ophelia Pang, Lin Cheng, Bifurcation and stability of forced convection intightly coiled ducts: Multiplicity, Chaos, Solitions and Fractals 20(2005)337-35221) Qiu, Yan; Tian Mao-Cheng; Cheng, Lin; Niu, Wei-Ran; Theory of the reduction of fly-ashcarbon content in a circulating fluidized boiler and its applied research; Journal ofEngineering for Thermal Energy and Power, v24, n4n2005np369-37222) Heming Yun, Cheng Lin and Zhang Guiyu. The development direction of saving energy forChinese architecture and the utilization of renewable energy. The 4th internationalconference on sustainable energy tecnologies, 2005: 664~669 (ISBN-7-112-07718-4)23) S.S.Zhang, Y.H.Cheng, L.Cheng,A Study on Vacuum Brazing Procedure of Plate HeatExchanger Materials Science Forum Vols 471-472,pp.640-643,200424) Tian Mao-Cheng,Cheng Lin,Lin Yi-Qing,Zhang Guan-Min,Heat transfer enhancement bycrossflow-induced vibration,Heat Transf. Asian Res,2004 Vol 33(4) p:211-21825) Qiu Yan, Cheng Lin,The Research of Complex Heat Transfer Enhancement by Fluid InducedVibration,Journal of Hydrodynamics,2003,Vol.12(1) Ser.B26) Cheng lin,Heat transfer enhancement by fluid induced vibration Heat transfer2002,Proceeding of 12th international heat transfer conference,200227) Tian, Mao-Cheng; Cheng, Lin; Lin, Yi-Qing; Zhang, Guan-Min; Experimental investigation ofheat transfer enhancement by crossflow induced vibration, Journal of Engineering Thermalphysics, v23,n1,2002,p6328) 云和明,程林,王立秋,流体变物性对细矩形通道流动和传热的影响,《工程热物理学报》 Vol.29, No.11,2008年11月29) 程林,换热设备中水垢的物相分析及与换热面的界面结合状态,第二十一届全国水动力学研讨会暨第八届全国水动力学学术会议暨两岸船舶与海洋工程水动力学研讨会文集,2008.8,P:17-1930) 程延海,邹勇,程林,刘文,热交换器表面Ni-P镀层工艺对组织性能的影响, 功能材料,2008,Vol.39,No.5,P:799-80131) 杜文静,程林,田茂诚,朱新军,刘文,过热蒸汽型复合换热器传热与振动特性分析,《工程热物理学报》,2008年4月第四期,677-684。32) 曲燕,程林,Stefano Zinna,栾涛,Marco Marengo,环路热管地面试验平台的热设计,《中国空间科学技术》,2007年10月第五期,14-20。33) 云和明,程林,王立秋,曲燕,光滑矩形微通道液体单相流动和传热的数值研究.《工程热物理学报》No.28增刊,2007年6月34) 云和明,程林,王立秋,流体变物性对细矩形通道流动和传热的影响,中国工程热物理年会2007传热传质学论文集,编号073102。35) 郝玉振,程林,螺旋折流式换热器的直接设计方法,《压力容器》2007年三月刊。36)云和明,程林,王立秋,曲燕,光滑矩形微通道液体单相流动和传热的数值研究. 中国工程热物理学会,2006传热传质学论文集, 南京: 611-616。37) 云和明,程林,陈宝明,杜文静,电子元件散热的优化分析,《工程热物理学报》,2006,Vol.27(3)38) 程林,栾涛,王立秋,张玉相,2-T型微通道气泡发生器可视化实验研究,中国工程热物理学会多项流学术会议论文集,2006-06607939) 朱新军,张树生,程林,机械传动远程实验系统,实验室研究与探索,2006,Vol.25(7)40) 曲燕,栾涛,程林,放置倾角对轴向槽道热管传热特性影响的实验研究,宇航学报,2006,Vol.27(3)41) 云和明,程林,陈宝明,杜文静,电子模块间距对其散热效果的影响,中国工程热物理学会第十一届年会论文集,2005-53023。42) 程林,田茂诚,张冠敏,一种复杂非线性传热元件的传热及污垢特征,《工程热物理学报》,2004Vol.25(1)。43) 程林,冷学礼,杜文静,基于降低污垢热组的复合强化传热研究,《工程热物理学报》,2003,Vol.24(3)44) 冷学礼,程林,杜文静,流体低速横掠振动圆管的传热特性研究,《工程热物理学报》,2003,Vol.24(2)45) 程林,田茂诚,张冠敏,邱燕,流体诱导振动强化传热的理论分析,《工程热物理学报》2002,Vol.23(3)46) 程林,田茂诚,张冠敏,邱燕,流体诱导振动强化传热的实验研究,《工程热物理学报》,2002,Vol.23(4)47) 陆国栋,周强泰,程林,田茂诚,梯形剖面圆形肋片管温度场的研究,《热能动力工程》,2002年9月第17卷48) 陆国栋,周强泰,程林,田茂诚,梯形剖面肋片管二维温度场的测定与分析,《汽轮机技术》,2002,44(6)49) 程林,田茂诚,林颐清,张冠敏,弹性管束汽—水换热器强化传热试验研究,《工程热物理学报》,2001,22(2):199-20250) 刘鉴民,程林,大型太阳能热水装置与燃油锅炉联合供热系统,《太阳能》,1999年第三期,第16页51) 田茂诚,程林,弹性管束型容积式热交换器的研究,《热能动力工程》,1999,14(3):173-17552) 程林,张梦珠,幂律流体绕流楔形物体时的层流边界层,东南大学学报自然科学版,1997,27(1):87-9153) 程林,陆煜,具有完整隔板的双向倾斜矩形封闭空腔内自然对流数值解,《太阳能学报》,1996,17(1):111-11254) 田茂诚,程林,沸腾炉旋风燃尽室的冷态及热态试验研究,《热能动力工程》,1996,11(6):398-40155) 程林,田茂诚,圆形管道内自由旋流衰减的理论分析,《水动力学研究与进展:A辑》,1996,10(6):673-67856) 王涛,程林,内管纵向敷肋时套管式换热器传热研究,《水动力学研究与进展:A辑》,1996,11(6):707-71157) 田茂诚,程林,沸腾悬浮两级燃烧可行性分析及实验研究方法,《山东能源》,1994年第二期,4-7页58) 杨培毅,程林,汽车余热空调的研究现状,《流体工程》,1993,21(6):54-5959) 程林,裘裂钧,大面积厂房间歇供暖的地面吸热问题,山东工业大学学报,1992,22(3):60-66等70余篇

你好,采用水、丙酮以及其二元混合工质对振荡热管进行实验研究,选取35%~70%充液率,10~100 W加热功率以及水/丙酮13:1、4:1、1:1、1:4、1:13配比,将实验数据与混合工质物性、相变特点结合以研究其振荡热管传热性能。结果表明:混合溶液振荡热管启动所需功率小于水;小充液率时,除较低丙酮比例配比(如水/丙酮13:1混合工质)以外,混合工质比纯工质振荡热管不容易烧干,纯工质振荡热管在50 W时热阻就已经上升到较高数值,而混合工质振荡热管在同样的功率则维持着较低的热阻。在丙酮中加入少量水(如水/丙酮1:13混合工质)能有效改善振荡热管烧干情况,然而,少量丙酮与水混合而成的工质(如水/丙酮13:1混合工质)对振荡热管烧干情况的改善不明显;大充液率时,混合工质振荡热管的传热性能要弱于纯工质,在35~50 W,纯工质振荡热管热阻都低于混合工质,而在较大加热功率(50~100 W),水与混合工质振荡热管仍保持着较明显的热阻差。

浅析R407C在客车空调中的应用技术论文

随着城乡一体化进程的加快,带动了客车行业的持续发展,同时也带动了客车空调产业的迅速发展。但是,近年来全球气候变暖问题日益严重,引起了各国的高度重视。普遍认为,客车空调系统在提供舒适性小环境的同时也破坏了人类生存的大环境。

R407C 是一种安全、无毒、不破坏臭氧层的新型环保制冷剂,具有单位质量/ 单位容积制冷量大、能效比高、换热效率好等优点。西方发达国家有部分客车空调产品使用了R407C,其中冷王的R407C 制冷系统应用于客车已经量产商业化。在我国R407C 客车空调系统已从研究日渐走向应用,某些公司在客车空调系统中作过一些R407C 尝试应用,并有一定的成效[1- 2]。目前由于人们对这种非共沸工质的温度滑移、制冷剂成分变化后对系统的换热性能的影响不够了解,影响了R407C 在客车空调上的应用和推广。本文将客观地探讨客车空调系统应用国际社会倡导的环保工质R407C 的优越性,为R407C 客车空调器的研发设计提供参考。

1 R407C 与R134a 对比

1.1 制冷运行工况的确定

汽车空调系统与一般的空调系统的结构和使用条件均不同。客车空调90% 以上为非独立式空调系统。由于发动机转速变化很大,一般在700 ~2 300 r/min 之间,空调压缩机转速随汽车发动机转速的变化而相应变化;特别是城市客车运行于城市红绿灯区和停靠站之间,平均行驶车速约30 km/h,并且频繁停起和开关门,加之乘员变化很大,所以客车空调配置要求冷量大、制冷快。

根据客车空调系统随环境和车速而变工况的特点和实际情况,客车空调标准设计工况参数确定如下:冷凝温度50℃~60℃,蒸发温度0℃~5℃,过冷度5℃,过热度10℃,室外温度35℃,室内温度27℃,室内相对湿度50%,压缩机正常转速1 800 r/min。

1.2 综合性能分析

R134a 和R407C 都属于中温制冷剂,其中R134a 属于纯质制冷剂,R407C 属于多组分非共沸制冷剂。汽车空调中常用的制冷剂有R134a,但是R134a 有很多的缺点。它不但具有较高的、非常令人担忧的温室效应指数,而且R134a 亲油性差,还对铜有腐蚀性,但和铁、铝共存稳定性较好。另外,根据新的报道,R134a 在大气中分解会产生一种吸湿力较强的具有腐蚀性的液体,可在不同地方聚集,对人体的健康有一定的危害。而R407C 为非共沸混合工质,它是R32/R125/R134a 三种冷媒以混合质量比为23∶25∶52 而成的非共沸混合物。R407C 作为新型制冷剂正逐步被世人所认知,它具有清洁、低毒、不燃、制冷效果好、节能、环保等特点,已经大量用于空调行业。R407C单位容积制冷量大,热力性质优异,与酯类润滑油相溶;与铁、铜、铝共存,稳定性较好;但是具有较高的冷凝压力,在车载空调上使用有待进一步研究。

1.3 理论热力循环计算

1)纯工质R134a 热力性能计算。对于纯工质R134a,饱和温度和饱和压力是一一对应的。蒸发压力Pe 和冷凝压力Pc 可根据蒸发温度te 和冷凝温度tc 确定。

2)混合工质R407C 热力性能计算。由于R407C 为非共沸制冷剂,在相同压力条件下,相变时存在温度滑移现象,气相饱和温度(露点温度)和液相饱和温度(泡点温度)是不同的。本文选择露点温度和泡点温度的算术平均值作为确定工况点的等效平均温度。用线性插值方法计算出给定的蒸发(气相临界点)温度te和冷凝(液相临界点)温度tc相对应的蒸发压力Pe 和冷凝压力Pc。

3)热力性能计算方法和计算程序。根据上述R407C在给定蒸发温度te 和冷凝温度tc 下的蒸发压力Pe 和冷凝压力Pc 的确定方法,Pe 和Pc 及其te 和tc 成为了一一对应的关系。在确定了制冷循环的各状态点的温度后,根据过程特性,可以用NIST 制冷剂和混合制冷剂热力性质计算程序计算出h1、h2、h5、h0、v1 等。利用状态方程,根据各点状态参数,就可以计算出两种制冷剂在不同工况下的制冷循环的各项性能指标,包括单位质量制冷量、单位理论功、单位容积制冷量和制冷系数等。有关状态方程如下:单位制冷量q0= h1- h5;单位容积制冷量qv=q0/v1;理论比功w0=h2- h1;制冷系数COP=q0/w0;压力比π=Pc/Pe。

a. 实例计算。冷凝温度56.5℃,蒸发温度2℃,过冷度5℃,过热度10℃。特殊工况如表3 所示。冷凝温度60℃,蒸发温度0℃,过冷度5℃,过热度10℃。

实际工作中,上述方法比较繁琐,常利用R407C 制冷剂应用程序进行模拟计算,和上述方法相比,其计算误差<5%,在工程上是可以接受的。

b. 混合工质R407C 热力性能分析。由以上理论计算可知,在客车空调相同的.工况下,R407C 的单位理论功比R134a 约高16%,单位容积制冷量比R134a 高43%~50%;R407C 单位制冷量比R134a 高8%~10%,理论制冷系数比R134a 低5%~6%。在相同的工况下,R407C 的吸气压力比R134a 高54%~64%,排气压力比R134a 高50%~60%;R407C 的压力比比R134a 低3.5%~4.5%。

2 在客车空调应用中的技术探讨

2.1 R407C 系统的性能分析

R407C 单位容积制冷量比R134a 高43%~50%,可采用小排量压缩机达到相同制冷量;能减小客车空调压缩机和两器的体积和重量;能减少客车空调系统的安装空间,增加汽车的机动性和降低油耗。

市场上大客车空调主要使用的BOCK、Thermo King压缩机都有使用R407C 的产品[7- 8],制冷剂软管的爆破压力均高于12 500 kPa,已满足爆破压力是运行压力的5 倍以上的标准要求。因此,现有的汽车空调制冷系统的耐压性能够适应R407C 的要求。

空调压缩机作为空调系统的心脏,其安全保护一直是控制的重点。为防止损坏,需要有高压控制及防液击的措施。另外,由于汽车大多时间在外面行驶,受天气的影响,其压力变化较大。为防止系统高压过高,最好有安全泄压阀。

采用R407C 作为制冷剂时,在相同的工况下,R407C 的吸气压力比R134a 高54%~64%,排气压力比R134a 高50%~60%;系统的高、低、中压压力开关的动作压力值需要调整。同时为保证制冷系统的回油,设计管路时要考虑气体制冷剂的流速,水平管内为不小于3.8 m/s,竖直管内为不小于7.6 m/s。

2.2 R407C 系统的有关要求

1)R407C 系统对两器的要求。利用R407C 温度滑移的优势,城市客车空调换热器设计时可将两器设计成都是按逆流状态换热,以改善换热性能,并采取相应的强化换热措施,弥补采用R407C热传导性能较差的不足。

由于系统运行时压力比R134a 高,故对两器的要求也高。不光要考虑压力的因素,还要考虑汽车行驶过程中振动所带来的强度影响,最好有减振措施。

R407C 与空气的混合气体不得用于压力和检漏试验,因为可能会引起爆炸。推荐系统检漏压力为3.2~3.5 MPa,在满足换热要求的情况下,管壁的厚度最好大一些。例如,客车空调顶置蒸发器是铜管铝片式,建议铜管为φ9.525×0.41,翅片厚0.15,翅片距2.2 mm,翅片为亲水铝箔;流路按性能设计,但R407C 制冷剂在蒸发器内的流路长建议6~10 m,同时在冷凝器内的流路长建议14~18 m。

2)R407C 系统对膨胀阀和其它零部件的要求。

①膨胀阀。要选择R407C 专用膨胀阀;膨胀阀并不直接控制系统制冷量。针对城市客车在不同行驶速度下空调的变化性,膨胀阀在满足最大制冷量的同时,要求可调节范围大,性能良好。以丹佛斯公司的膨胀阀产品为例,制冷剂采用R407C,当制冷量为28 kW,选择型号为TDEZ8 热力膨胀阀;制冷量为21 kW,选择型号为TDEZ6 膨胀阀。

②管路。作为系统中的连接管路,泄漏一直是汽车空调最头痛的问题。R407C 系统排气压力很高,需要增加系统管路壁厚。又因其是非共沸混合物,如果系统泄漏,对性能的影响是很明显的,这就要求管路系统中尽量少接头,除干燥器需要经常更换、用可拆卸接头外,不推荐用可拆卸接头,尽量采用焊接,减少泄漏点,保证系统的密封。

③干燥过滤器。一般选用分子筛作干燥剂。分子筛是硅酸盐晶体,其晶体结构中有许多孔径均匀的孔道和内表面很大的孔穴,能吸附分子直径比孔径小的分子。

干燥剂:确认两种适合R407C 冷媒用的干燥剂为XH- 10C 和XH- 11。泄漏要求:在R407C 最高工作压力3.4 MPa 下,干燥过滤器的年泄漏量不大于2.8 g/a。结构要求:为防止分子筛磨损,在干燥过滤器的内部加装弹簧固定分子筛,使得冷媒在干燥过滤器内部得到缓冲。安装位置:POE 油具有水解性,选择干燥过滤器安装在系统液管管路上的蒸发器入口处。推荐适用于客车空调干燥过滤器端面密封接口便于更换和维修。

④储液器。空调结构设计时,避免含有R407C 制冷剂的储液器过热。R407C 热分解将会产生具有强烈毒性和强腐蚀性的蒸汽。如果过热,储液器将会爆炸。

⑤ 兼容性。R407C 与R134a 的材料兼容性基本一致;R134a 在汽车空调系统中已经普遍使用,R407C 在工商制冷系统中已广泛使用;目前的材料技术已能满足R407C 的要求。因此,空调系统选用的密封件、软管、冷冻油等材料与R134a 系统相同。但是在高温高压下,一些金属在催化剂作用下可能发生化学反应,从而使制冷剂变质。当镁铝合金材料中镁的含量多于2%时,不能用于R407C 的空调系统。R407C 制冷剂还可能会与焊接零件的焊接剂发生反应。

⑥其它。R407C 空调系统中的截止阀和四通阀(电动客车热泵系统用)与其他制冷剂空调系统不同,必须使用专门R407C 的截止阀和四通阀。

⑦ 低温条件时,蒸发器入口处结霜明显,化霜感温器位置一般要避免选择此位置,以防止感温器频繁动作进入化霜程序,影响到制热效果。

3 结论

1)在客车空调标准工况下,R407C 系统能大大减小汽车空调压缩机和两器的体积和重量,对提高汽车的动力性能,降低能耗,节约制造成本具有很大的意义。

2)客车空调R407C 系统有较高的排气压力。在相同的工况下,有较大的压缩机扭矩、单位理论功比R134a 约高16%;制冷剂泄露会改变组分和热物性等。

3)通过提升汽车空调制冷系统的工艺焊接、加工生产工艺水平,升级气密性试压压力和爆破试验标准;通过调整管路和换热器的壁厚,提高对系统密封件、尤其是冷凝侧的气密性、强度和抗震性的要求;加大压缩机离合器的扭矩;应该可以弥补客车空调R407C 系统有较高排气压力的缺陷。

4)将R407C 用于客车空调制冷系统与R134a 相比,可以降低压缩机的排量和降低成本。考虑到重量因素和理论循环的制冷系数等,R407C 系统运行经济指标和安全可靠性方面,与R134a 基本相同。

5)采用R407C 空调制冷系统,体现了安全和环保新理念,是轻量化、舒适化及节能化的发展方向。

丙酮水混合溶液的传热系数范围一般在0.2~0.9W/(m·K)之间。

  • 索引序列
  • 晶体管振荡器毕业论文
  • 高频振荡器毕业论文
  • 正弦波振荡器的毕业论文
  • 震荡计步器毕业论文
  • 振荡热管换热性能试验研究论文
  • 返回顶部