医学科研实验基础知识笔记(四):细胞自噬研究策略
细胞自噬是指细胞在外界环境因素的影响下, 细胞利用溶酶体降解自身受损、 变性或衰老的大分子物质以及细胞器的自我消化过程。自噬是细胞的一种自我保护机制, 广泛存在于真核细胞内, 在调节细胞生存和死亡的过程中, 起着重要的作用。
当细胞发生自噬后, 在自噬相关基因的调节下, 细胞通过单层或双层膜, 包裹待降解的细胞质或细胞器, 形成囊泡状的自噬体(autophagosome) 。然后自噬体再和溶酶体(lysosome)
发生融合形成自噬溶酶体(autolysosome) , 由溶酶体内的一系列水解酶, 降解自噬溶酶体内所包裹的内容物, 以实现细胞对自身代谢和能量的更新。
1.自噬的细胞学分类及过程
根据细胞内物质运输到溶酶体的方式以及生理功能的差异, 哺乳动物的细胞自噬可以分为三种类型:大自噬/宏自噬(macroautophagy) , 小自噬/微自噬(microautophagy) 和分子伴侣介导的自噬(chaperone-mediated autophagy, CMA) 。
1) 大自噬/宏自噬:我们通常所说的自噬指的就是大自噬/宏自噬。在大自噬的过程中, 细胞质中可溶性的大分子物质以及变性的细胞器, 被内质网、 线粒体来源的单层或双层膜包裹形成自噬体。接着自噬体的外膜与溶酶体膜融合, 进一步形成自噬溶酶体, 自噬体内的待降解物被一系列的水解酶降解, 最终完成整个的自噬过程。
2) 小自噬/微自噬:与大自噬过程不同, 是溶酶体膜自身发生内陷, 包裹和吞噬细胞内待降解的底物, 并在溶酶体内发生降解。小自噬与大自噬的区别就在于, 在小自噬过程中胞质成份是直接被溶酶体包裹, 没有形成自噬体的过程。
3) 分子伴侣介导的自噬:在分子伴侣介导发生的自噬过程中, 其待降解的底物都是可溶性的蛋白质分子。分子伴侣蛋白识别带有特定氨基酸序列的底物蛋白质分子, 并与之结合, 然后再经溶酶体膜上的受体 Lamp2a(lysosome-associated membrane protein 2, Lamp2) 转运到溶酶体;底物蛋白分子再在溶酶体内, 被水解酶降解。因此, 分子伴侣介导的自噬与前两者不同, 在降解蛋白时具有选择性。而大自噬和小自噬现象中, 一般而言, 在降解蛋白时没有明显的选择性。
2.自噬信号通路
3.自噬与凋亡的关系
细胞凋亡也被称为 I 型程序性细胞死亡;自噬则被称为 II 型程序性细胞死亡。凋亡和自噬是两种显著不同的细胞死亡形式, 两者在形态、 生化指标以及调控细胞死亡的过程上都存在着较大的差异, 但两者又不是两个完全独立的过程。许多研究表明, 凋亡和自噬的作用以及功能在某些情况下也是相互影响和制约的。自噬和凋亡之间存在着三种不同类型的相互作用,而且每种类型都对应着相应的特定的细胞类型、 刺激和环境。
1) 自噬和凋亡互相协同, 共同促进细胞死亡。两种效应之间, 可以其中一种效应影响另一种效应;自噬也可以作为凋亡的上游调节因子, 直接调控细胞凋亡, 从而影响细胞的死亡;
2) 自噬可以通过促进细胞存活而拮抗细胞的凋亡效应。比如, 可以通过去除因氧化应激受损的细胞器, 或降解变性的大分子物质, 为饥饿的细胞提供生存所需要的营养和能量;或者通过降解未折叠的蛋白来抑制内质网应激。自噬的这些功能将会抑制促凋亡信号的产生, 从而起到拮抗细胞凋亡的作用。
3) 自噬有时虽然自身并没有导致细胞死亡, 但却参与了细胞凋亡的过程。比如自噬参与了一些 ATP 依赖的凋亡过程。
4.自噬的分子机制和特征
1) 自噬诱导阶段(induction) :正常生理状态下, 细胞保持很低的基础自噬水平。这时细胞内能量充足,哺乳动物雷帕霉素靶蛋白复合物 1(也就是 mTOR 复合物 1,也叫做 mTORC1)处于活化的状态。活化的 mTORC1 通过磷酸化的方式使得 ATG13 发生磷酸化反应, 从而抑制细胞的自噬。
2) 成核过程(vesicle nucleation) :成核过程和 Vps34-ATG6 复合物密切相关。这个复合物还包含有调节性蛋白激酶 Vps15, 共同作用于膜泡的成核, 介导 PAS(也就是前自噬体结构pre-autophagosomal structure)的形成。
Vps34-ATG6 复合体还可以召集 ATG12-ATG5 和 ATG16 多聚体以及 LC3, 并通过后两者促进吞噬泡的伸展扩张。请大家注意, Vps34 在哺乳动物中的同源蛋白是 class III PI3K;ATG6在哺乳动物中的同源蛋白是 Beclin-1, 所以 Vps34-ATG6 复合体, 也被称为 PI3K-Beclin-1复合物。
3) 自噬体的延伸阶段:这个过程的分子机制是最为复杂的。哺乳动物自噬体的延伸主要依赖于两个类泛素化的系统:a) ATG12 的结合过程;b) LC3 的修饰过程。
ATG12 的结合过程是类似泛素化的过程, 需泛素活化酶 E1 和 E2 的参与。ATG12 首先由 E1样酶 ATG7 活化, 再通过 E2 样酶 ATG10 转运并结合 ATG5, 然后和 ATG16 结合, 生成ATG12-ATG5-ATG16 的多体复合物。这个复合物定位于前自噬体结构的外膜表面, 并参与前自噬体外膜的扩张。
LC3 在酵母中的同源基因是 ATG8。LC3 的修饰过程同样需要类似泛素活化酶 E1 和 E2 的参与。LC3 前体形成后被 ATG4 加工成胞浆可溶性的 LC3-Ⅰ, 然后在 E1 样酶 ATG7 和 E2样酶 ATG3 的作用下, 和磷脂酰乙醇胺(PE)共价连接成为脂溶性的 LC3-PE(也就是 LC3-II),并参与膜的延伸。LC3-Ⅱ能够与新形成的膜结合, 直到自噬溶酶体(Autolysosome)的形成。因此, LC3-Ⅱ常用作自噬形成的标识物, 也是一种重要的定位于自噬泡膜上的多信号传导调节蛋白。
哺乳动物的 ATG12-ATG5 类泛素化过程和 LC3 类泛素化过程并不是独立运行的, 它们之间可以相互作用、 相互调节。
4) 自噬体的成熟阶段:自噬体的成熟主要是指自噬体通过微管骨架在转运必须内吞体分类复合物(ESCRT)和单体 GTP 酶(Rab S)作用下, 与溶酶体融合形成自噬溶酶体的过程。参与成熟阶段的溶酶体相关蛋白还包括:LAMP1、 LAMP2、 UVRAG(紫外线抵抗相关肿瘤抑制基因)。
5) 自噬体的裂解阶段:是指自噬溶酶体膜的裂解及内容物在溶酶体水解酶的作用下降解的过程。降解过程中产生的氨基酸及部分蛋白可以为细胞提供营养、 能量或循环利用。
5.自噬诱导剂
a) Bredeldin A / Thapsigargin / Tunicamycin :模拟内质网应激
b) Carbamazepine/ L-690,330/ Lithium Chloride(氯化锂):IMPase 抑制剂(即Inositol monophosphatase,肌醇单磷酸酶)
c) Earle's平衡盐溶液:制造饥饿
d) N-Acetyl-D-sphingosine(C2-ceramide):Class I PI3K Pathway抑制剂
e) Rapamycin:mTOR抑制剂
f) Xestospongin B/C:IP3R阻滞剂
6.自噬抑制剂
a) 3-Methyladenine(3-MA):(Class III PI3K) hVps34 抑制剂
b) Bafilomycin A1:质子泵抑制剂
c) Hydroxychloroquine(羟氯喹)
除了选用上述工具药外,一般还需结合遗传学技术对自噬相关基因进行干预:包括反义RNA干扰技术(Knockdown)、突变株筛选、外源基因导入等。
7.自噬的检测手段
自噬的评估通常采用多个自噬阶段的标志物,因为自噬小体数量的增加可能是自噬上调也可能是自噬最后阶段降解被抑制所致,所以设置合适的对照很有必要。
(1)透射电镜,电镜观察自噬体和溶酶体的超微结构;
(2)WB检测标志物LC3/Atg8和p62/SQSTM1;生化检测自噬体膜标志蛋白, 特别是ATG12、 ATG5 和 LC3;荧光显微镜检测 LC3 或GFP-LC3 斑点的形成;生化检测自噬底物 p62。
(3)WB检测Lamps、Atg5、Atg14和Beclin-1。
(4)组织蛋白酶Cathepsin活力检测。
(5)IF检测自噬潮autophagic flux
自噬过程进行观察和检测 细胞经诱导或抑制后,需对自噬过程进行观察和检测,常用的策略和技术有:
(1)观察自噬体的形成
由于自噬体属于亚细胞结构,普通光镜下看不到,因此,直接观察自噬体需在透射电镜下。Phagophore的特征为:新月状或杯状,双层或多层膜,有包绕胞浆成分的趋势。自噬体(AV1)的特征为:双层或多层膜的液泡状结构,内含胞浆成分,如线粒体、内质网、核糖体等。自噬溶酶体(AV2)的特征为:单层膜,胞浆成分已降解。(autophagic vacuole,AV)
(2)在荧光显微镜下采用GFP-LC3融合蛋白来示踪自噬形成
由于电镜耗时长,不利于监测(Monitoring)自噬形成,人们利用LC3在自噬形成过程中发生聚集的现象开发出了此技术。无自噬时,GFP-LC3融合蛋白弥散在胞浆中;自噬形成时,GFP-LC3融合蛋白转位至自噬体膜,在荧光显微镜下形成多个明亮的绿色荧光斑点,一个斑点相当于一个自噬体,可以通过计数来评价自噬活性的高低。
(3)利用Western Blot检测LC3-II/I比值的变化以评价自噬形成自噬形成时,胞浆型LC3(即LC3-I)会酶解掉一小段多肽,转变为(自噬体)膜型(即LC3-II),因此,LC3-II/I比值的大小可估计自噬水平的高低。
(注意:LC3抗体对LC3-II有更高的亲和力,会造成假阳性。需要多种检测方法结合使用,同时需考虑溶酶体活性的影响。)
(4)检测长寿蛋白的批量降解:非特异
(5)MDC(Monodansylcadaverine,单丹磺酰尸胺)染色:包括自噬体,所有酸性液泡都被染色,故属于非特异性的。
(6)CellTrackerTM Green染色:主要用于双染色,但其能染所有的液泡,故也属于非特异性的。
自噬相关蛋白的定位 在研究自噬相关蛋白时,需对其进行定位。
由于自噬体与溶酶体、线粒体、内质网、高尔基体关系密切,为了区别,常用到一些示踪蛋白在荧光显微镜下来共定位:
Lamp-2:溶酶体膜蛋白,可用于监测自噬体与溶酶体融合。
LysoTrackerTM 探针:有红或蓝色可选,显示所有酸性液泡。
pDsRed2-mito:载体,转染后表达一个融合蛋白(红色荧光蛋白+线粒体基质定位信号),可用来检测线粒体被自噬掉的程度(Mitophagy)。
MitoTraker探针:特异性显示活的线粒体,荧光在经过固定后还能保留。
Hsp60:定位与线粒体基质,细胞死亡时不会被释放。
Calreticulin(钙网织蛋白):内质网腔
(注意:这些蛋白均为胞浆蛋白,爬片或胰酶消化的细胞在做免疫荧光前需先透膜(permeablize),可采用0.1%SDS处理。)
8.自噬研究常规思路
通常情况下,除了研究自噬现象本身,大家更多的是将自噬与各种生命活动或者疾病结合起来,把自噬作为这些方向的一个机制来研究。比如研究自噬如何参与肿瘤的发生发展、如何参与肿瘤的耐药性与复发转移、如何参与肿瘤免疫治疗的效果、如何参与炎症反应、如何参与氧化应激,如何参与自闭症、阿尔兹海默症的发生与治疗等,通常的研究模式:
(1)证明自噬参与了相关研究表型(电镜、LC3II/I-WB、LC3亚细胞定位、LC3荧光示踪监测自噬流等)
(2)证明自噬在表型中起到关键作用(通过自噬抑制剂、激动剂进行关联研究)找到表型与自噬桥梁分子(检测pI3K通路、Beclin-1、ATG家族各成员)
(3)在基因层面通过gain of/lost of function研究桥梁分子在自噬中的作用。
9.研究自噬的文献参考
[1]. Emerging Mechanisms in Initiating and Terminating Autophagy. Trends Biochem Sci. 2017 Jan;42(1):28-41.
[2]. Targeting autophagy in cancer. Nat Rev Cancer. 2017 Sep;17(9):528-542.
[3]. Autophagy: controlling cell fate in rheumatic diseases. Nat Rev Rheumatol. 2016 Sep;12(9):517-31.
[4]. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat Rev Immunol. 2016 Nov;16(11):661-675.
[5]. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron. 2017 Mar 8;93(5):1015-1034.
[6]. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol. 2017 Apr;14(4):247-258.
[7]. Epigenetic Control of Autophagy: Nuclear Events Gain More Attention. Mol Cell.2017 Mar 2;65(5):781-785.
[8]. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov.2017 Jul;16(7):487-511.
1、 自噬的定义: 细胞自噬是真核生物中进化保守的对细胞内物质进行周转的重要过程。该过程中一些损坏的蛋白或细胞器被双层膜结构的自噬小泡包裹后,送入溶酶体(动物)或液泡(酵母和植物)中进行降解并得以循环利用。2、 自噬的过程: 从一张图片开始: 步骤1:细胞接受自噬诱导信号后,在胞浆的某处形成一个小的类似“脂质体”样的膜结构,然后不断扩张,但它并不呈球形,而是扁平的,就像一个由2层脂双层组成的碗,可在电镜下观察到,被称为Phagophore,是自噬发生的铁证之一。 步骤2:Phagophore不断延伸,将胞浆中的任何成分,包括细胞器,全部揽入“碗”中,然后“收口”,成为密闭的球状的autophagosome,我把它翻译为“自噬体”。电镜下观察到自噬体是自噬发生的铁证之二。有2个特征:一是双层膜,二是内含胞浆成分,如线粒体、内质网碎片等。 步骤3:自噬体形成后,可与细胞内吞的吞噬泡、吞饮泡和内体融合(加了个“可”字,意思是这种情况不是必然要发生的)。 步骤4:自噬体与溶酶体融合形成autolysosome,期间自噬体的内膜被溶酶体酶降解,2者的内容物合为一体,自噬体中的“货物”也被降解,产物(氨基酸、脂肪酸等)被输送到胞浆中,供细胞重新利用,而残渣或被排出细胞外或滞留在胞浆中。3 、自噬的特性: 1)自噬是细胞消化掉自身的一部分,即self-eating,初一看似乎对细胞不利。事实上,细胞正常情况下很少发生自噬,除非有诱发因素的存在。这些诱发因素很多,也是研究的热门。既有来自于细胞外的(如外界中的营养成分、缺血缺氧、生长因子的浓度等),也有细胞内的(代谢压力、衰老或破损的细胞器、折叠错误或聚集的蛋白质等)。由于这些因素的经常性存在,因此,细胞保持了一种很低的、基础的自噬活性以维持自稳。 2)自噬过程很快,被诱导后8min即可观察到自噬体(autophagosome)形成,2h后自噬溶酶体(autolysosome)基本降解消失。这有利于细胞快速适应恶劣环境。 3)自噬的可诱导特性:表现在2个方面,第一是自噬相关蛋白的快速合成,这是准备阶段。第二是自噬体的快速大量形成,这是执行阶段。 4)批量降解:这是与蛋白酶体降解途径的显著区别 5)“捕获”胞浆成分的非特异性:由于自噬的速度要快、量要大,因此特异性不是首先考虑的,这与自噬的应急特性是相适应的。 6)自噬的保守性:由于自噬有利于细胞的存活,因此无论是物种间、还是各细胞类型之间(包括肿瘤细胞),自噬都普遍被保留下来(谁不喜欢留一手呢?)。4 、自噬过程的调控: 从上面总结的自噬特点中可以看出,自噬这一过程一旦启动,必须在度过危机后适时停止,否则,其非特异性捕获胞浆成分的特性将导致细胞发生不可逆的损伤。这也提醒我们在研究自噬时一定要动态观察,任何横断面的研究结果都不足以评价自噬的活性。目前,已经报告了很多因素能诱导细胞发生自噬,如饥饿、生长因子缺乏、微生物感染、细胞器损伤、蛋白质折叠错误或聚集、DNA损伤、放疗、化疗等等,这么多刺激信号如何传递的、哪些自噬蛋白接受信号、又有哪些自噬蛋白去执行等很多问题都还在等待进一步解答中。 关于传递自噬信号的通路目前比较肯定的有: 抑制类 1)Class I PI3K pathway(PI-phosphatidylinositol,磷脂酰肌醇)与IRS (Insulin receptor substrate)结合,接受胰岛素受体传来的信号(血糖水平高抑制自噬) 2)mTOR pathway(mammalian target of rapamycin) mTOR在人类中的同源基因是FRAP1(FK506 binding protein 12-rapamycin associated protein 1),是一个丝/苏氨酸蛋白激酶。能接受多种上游信号,如Class I PI3K、IGF-1/2、MAPK,能感受营养和能量的变化,rapamycin是最典型最常用的自噬激动剂. 激活类 1)Class III PI3K 结构上类似于Class I PI3K,但作用相反。3-MA是Class III PI3K的抑制剂,因此3-MA可以作为自噬的抑制剂. 5 、自噬的研究方法: 正常培养的细胞自噬活性很低,不适于观察,因此,必须对自噬进行人工干预和调节,经报道的工具药有: (一)自噬诱导剂 1)Bredeldin A /Thapsigargin / Tunicamycin : 模拟内质网应激 2 )Carbamazepine/L-690,330/ LithiumChloride(氯化锂): IMPase 抑制剂 (即Inositolmonophosphatase,肌醇单磷酸酶) 3 )Earle's平衡盐溶液: 制造饥饿 4 )N-Acetyl-D-sphingosine(C2-ceramide):Class I PI3KPathway抑制剂 5 )Rapamycin:mTOR抑制剂 6 )Xestospongin B/C:IP3R阻滞剂 (二)自噬抑制剂 1 )3-Methyladenine(3-MA):(Class III PI3K) hVps34 抑制剂 2 )Bafilomycin A1:质子泵抑制剂 3 )Hydroxychloroquine(羟氯喹):Lysosomal lumenalkalizer(溶酶体腔碱化剂)除了选用上述工具药外,一般还需结合遗传学技术对自噬相关基因进行干预:包括反义RNA干扰技术(Knockdown)、突变株筛选、外源基因导入等。 细胞经诱导或抑制后,需对自噬过程进行观察和检测,常用的策略和技术有: 1)观察自噬体的形成 由于自噬体属于亚细胞结构,普通光镜下看不到,因此,直接观察自噬体需在透射电镜下。Phagophore的特征为:新月状或杯状,双层或多层膜,有包绕胞浆成分的趋势。自噬体(AV1)的特征为:双层或多层膜的液泡状结构,内含胞浆成分,如线粒体、内质网、核糖体等。自噬溶酶体(AV2)的特征为:单层膜,胞浆成分已降解。(autophagic vacuole,AV) 2)在荧光显微镜下采用GFP-LC3等融合蛋白来示踪自噬形成:(常用) GFP-LC3单荧光指示体系:由于电镜耗时长,不利于监测(Monitoring)自噬形成。我们利用LC3在自噬形成过程中发生聚集的现象开发出了GFP-LC3指示技术:无自噬时,GFP-LC3融合蛋白弥散在胞浆中;自噬形成时,GFP-LC3融合蛋白转位至自噬体膜,在荧光显微镜下形成多个明亮的绿色荧光斑点,一个斑点相当于一个自噬体,可以通过计数来评价自噬活性的高低。双荧光指示体系:汉恒生物科技(上海)有限公司已开发出用于表达mRFP-GFP-LC3融合蛋白的病毒产品。mRFP用于标记及追踪LC3,GFP的减弱可指示溶酶体与自噬小体的融合形成自噬溶酶体,即由于GFP荧光蛋白对酸性敏感,当自噬体与溶酶体融合后GFP荧光发生淬灭,此时只能检测到红色荧光。 3)利用Western Blot检测LC3-II/I比值的变化以评价自噬形成。 自噬形成时,胞浆型LC3(即LC3-I)会酶解掉一小段多肽,转变为(自噬体)膜型(即LC3-II),因此,LC3-II/I比值的大小可估计自噬水平的高低。 (Note:LC3抗体对LC3-II有更高的亲和力,会造成假阳性。方法2和3需结合使用,同时需考虑溶酶体活性的影响) 4) 利用Western Blot检测p62蛋白来评价自噬以及自噬流的强弱:起初自噬所降解的底物被认为是随机的,但是后来的研究表明有些蛋白是选择性降解的,在这些蛋白之中研究的最为透彻的是p62蛋白,p62蛋白水平的多少与自噬流的强弱有着反比例关系。 5)MDC或者Cyto-ID染色:包括自噬体,所有酸性液泡都被染色,故属于非特异性的。 6)Cell Tracker TM Green染色:主要用于双染色,但其能染所有的液泡,故也属于非特异性的。 6、自噬体的发生: 目前认为,自噬体的膜不是直接来源于高尔基体或内质网,而是在胞浆中重新生成的,但具体的机制尚不清楚。当beclin-1被活化后,胞浆中先形成很多个membrane source(自噬体膜发生中心),在它们不断扩展的过程中(phagophore到autolysosome),VMP1蛋白由内质网和高尔基体转位到自噬体膜上(VMP1又叫TMEM49,已知唯一与自噬有关的 跨膜 蛋白),同时,MAP1-LC3由胞浆型(即LC3-I)转位到自噬体膜(即LC3-II),LC3这一转变过程可被Western Blot和荧光显微镜检测到,现已成为监测自噬体形成的推荐方法。7、自噬与细胞死亡的关系: 有必要说明一下的是,细胞死亡是一个非常复杂的过程,为了研究方便,需进行分类,但我们思考时不要局限于这些 人为的分类,而应注重于现象本身来研究其背后的机制。 一直以来人们从不同角度、用不同方法来观察细胞的死亡,并把细胞的死亡方式分为2类:坏死和凋亡,因为两者有着明显的区别,其中最主要的区别之一就是细胞膜的通透性——坏死细胞的细胞膜丧失了完整性,内容物被释放出来,染料可自由进入细胞,而凋亡细胞保持完整,无内容物释放,染料也被排斥。很多实验亦根据这一原理来设计以区分坏死和凋亡,这将在后面一一介绍,如同刚刚说明的那样,这些实验只能说明细胞膜的通透性(必要条件,不是充分必要条件),而不能用来证实坏死细胞或凋亡细胞。一般认为坏死是被动的,不可控的,而凋亡是主动的,可控的。为了强调这一点,凋亡被定义为程序性细胞死亡(program celldeath,PCD)。但无论是坏死还是凋亡,都是一个过程,是需要时间的(尤其是凋亡,从启动到完成,细胞要执行很多反应),而且细胞死亡后都有“尸体”。在研究自噬与凋亡的关系时,人们发现细胞死亡前胞浆中存在大量的自噬体或自噬溶酶体,但这样的细胞缺乏凋亡的典型特点,如核固缩(pyknosis), 核破裂(karyorhexis)、细胞皱缩(shrinkage)、没有凋亡小体的形成等,被称为自噬样细胞死亡(autophagic celldeath,ACD),它是一种新的细胞程序性死亡,为了与凋亡区别,被命名为Type II cell death,相应的,凋亡为Type I cell death,坏死为Type III cell death。尽管这样,但对于自噬是否是细胞死亡的直接原因目前还存在很大的争议。到底是Cell death by autophagy(自噬引起死亡)还是Cell death with autophagy(死亡时有自噬发生,但不是直接原因)?对此,自噬研究领域“大牛”级专家Levine Beth在一篇nature的Review中表达了自己的观点。由于在形态学上2者无明显区别,但通过阻断自噬,观察细胞的结局可区分开来:Cell death by autophagy细胞存活,而Cell death with autophagy细胞死亡。8、自噬与肿瘤的关系: 与凋亡(在肿瘤细胞中一般都存在缺限)不同,自噬是被优先保留的。无论是肿瘤细胞还是正常细胞,保持一种基础、低水平的自噬活性是至关重要的。因为细胞中随时产生的“垃圾”(破损或衰老的细胞器、长寿命蛋白质、错误合成或折叠错误的蛋白质等等)都需要及时清除,而这主要靠自噬来完成,因此, 自噬具有维持细胞自稳的功能 ;如果将自噬相关基因突变失活,如神经元会发生大量聚集蛋白,并出现神经元退化。同时,自噬的产物,如氨基酸、脂肪酸等小分子物质又可为细胞提供一定的能量和合成底物,可以说, 自噬就是一个 “ 备用仓库 ” 。如Atg-5缺陷的小鼠在出生后喝上第一口奶之前就会饿死。更重要的是,自噬活性可在代谢应激(饥饿、生长因子缺乏、射线、化疗等)时大大增强,表现为胞浆中迅速涌现大量自噬体,这一现象被称为“自噬潮”(autophagic flux),广泛用于自噬形成的监测。自噬潮为细胞度过危机提供了紧急的营养和能量支持,有利于细胞的存活。 鉴于自噬的上述作用,自噬可为肿瘤细胞带来几大好处: 1 )肿瘤细胞本身就具有高代谢的特点,对营养和能量的需求比正常细胞更高,但肿瘤微环境往往不能如意,如肿瘤发生初始期到血管发生之前、肿瘤长大发生血管崩塌时、肿瘤细胞脱离原发灶游走时等都会出现营养不足或供应中断,而此时提高自噬活性可以有助于度过这一危机。 2)当化疗、放疗后,肿瘤细胞会产生大量的破损细胞器、损坏的蛋白质等有害成分,而此时提高自噬活性可及时清除这些有害物质,并提供应急的底物和能量为修复受损DNA赢得时间和条件。由于自噬减少了肿瘤细胞在代谢应激时发生坏死的机会,而对于肿瘤细胞群体而言,需要一部分细胞发生坏死,以引发适度的炎症(有利于血管的长入、吸引免疫细胞分泌生长因子等)。研究发现,很多类型的肿瘤在代谢应激时会“组成性”活化PI3K信号以抑制自噬(由于凋亡通路已受阻,抑制自噬会促进坏死),但具体机制尚不清楚。自噬与肿瘤的关系可能是双重的。①对不同的细胞,自噬的作用可能不同。②相同的细胞在不同的外部因素作用时,自噬的作用可能不同。③在肿瘤发生发展的不同阶段,自噬的作用可能不同。肿瘤生长的早期阶段自噬增强,是由于此时肿瘤的血管化作用不足,癌细胞的营养供给有限,需要通过自噬为自身提供营养。肿瘤进入发展阶段后基因变异积累,使包括 Beclin 1在内的众多抑癌基因失活,自噬活力降低。④对单个细胞和对整个肿瘤阻滞的作用可能不同。自噬功能不全的细胞易于坏死,但是坏死组织产生的细胞因子(包括部分生长因子)反而会促进肿瘤的生长。上述各种假设均有待证实。肿瘤为细胞分化障碍性的疾病已得到肯定,但自噬在肿瘤细胞的分化抑制过程中起着什么样的作用,自噬水平提高是抑制分化甚至导致去分化还是促进分化等问题尚未解决。 9、在研究自噬相关蛋白时,需对其进行定位。由于自噬体与溶酶体、线粒体、内质网、高尔基体关系密切,为了区别,常用到一些示踪蛋白在荧光显微镜下来共定位: Lamp-2:溶酶体膜蛋白,可用于监测自噬体与溶酶体融合。 LysoTrackerTM探针:有红或蓝色可选,显示所有酸性液泡。 pDsRed2-mito:载体,转染后表达一个融合蛋白(红色荧光蛋白+线粒体基质定位信号),可用来检测线粒体被自噬掉的程度(Mitophagy)。 MitoTracker探针:特异性显示活的线粒体,荧光在经过固定后还能保留。 Hsp60:定位与线粒体基质,细胞死亡时不会被释放。 Calreticulin(钙网织蛋白):内质网腔 Note:这些蛋白均为胞浆蛋白,爬片或胰酶消化的细胞在做免疫荧光前需先透膜(permeabilize),可采用0.1%SDS处理 自噬与细胞死亡经常需一起考虑,下面介绍一些检测细胞死亡的方法: 1)△ψmdissipation(线粒体跨膜电位的消失):TMRM发红色荧光,DiOC6(3)发绿色荧光。 2)Phosphatidylserine Externalization(磷脂酰丝氨酸外翻):Annexin V-FITC(绿色)染细胞膜。 3)检测线粒体产生的ROS:无荧光的HE(hydroethidine,氢化乙啶)可被ROS氧化为EthBr(ethidium bromide,溴乙啡啶),发红色荧光。NAO(nonylacridine orange,烷化吖啶橙,可发荧光)能与非氧化的cardiolipin(心磷脂,可被ROS氧化)反应而失去荧光。 4)线粒体IMS蛋白的释放:AIF,细胞色素c,分别用荧光二抗染色。 5)Capase 3a 染色:用荧光二抗染色,胞浆弥散分布。 6)细胞膜完整性检测:DAPI(蓝色)、Hoechst 33342或PI(红色)染核。胞膜完整的细胞(活细胞和早中期凋亡细胞)排斥,可联用annexin V。 10、如何用实验区分Cell death by autophagy和Cell death with autophagy? 第一步:利用上述方法证实细胞死亡 第二步:证实细胞死亡前发生了自噬 第三步:在形态学上区别开“自噬样死亡”与凋亡 第四步:利用遗传学手段(反义RNA干扰Knockdown掉Atg基因或hVps34)或工具药抑制自噬 第五步:细胞存活则为Cell death by autophagy,反之,细胞死亡则为Cell death with autophagy。 自噬的抑制根据自噬形成的过程,自噬的抑制也分为不同的阶段,包括自噬的起始阶段,自噬泡和溶酶体融合阶段,以及溶酶体内的降解阶段。目前常用的一些抑制药物如下: 1)对自噬体形成的抑制:主要是PI3K通路的抑制剂(如3-MA, Wortmannin,LY294002等),这些药物均可干扰或阻断自噬体形成。3-甲基腺嘌呤(3-Methyladenine,3-MA)是磷脂酰肌醇3激酶的抑制剂,可特异性阻断Autophagy中自噬体的形成,被广泛用作Autophagy的抑制剂。另外,渥曼青霉素(Wortmannin)、LY294002 也可用作Autophagy的抑制剂。 2)对自噬体与溶酶体融合的抑制:对自噬体与溶酶体融合过程进行阻断也能起着抑制自噬的作用,这些药物有巴伐洛霉素A1、长春碱、诺考达唑等。巴伐洛霉素A1(Bafilomycin A1)是一种来源于灰色链霉菌的大环内酯类抗生素,分子式C35H58O9,是空泡型H+-ATP酶的特异性抑制剂,具有抗菌、抗真菌、抗肿瘤等作用。当突触小泡经历胞外分泌时,巴伐洛霉素A1可以避免小泡重新酸化。有研究表明,在已发生自噬的肿瘤细胞中加入巴伐洛霉素A1,可使蛋白降解被抑制,自噬体增多而自噬溶酶体数目减少,并且自噬体中的酸性磷酸酶的活性也明显降低,从而证明其阻断了自噬体与溶酶体的融合过程。这种阻断是可逆的,在去除了药物作用后,自噬体仍可以与溶酶体融合形成自噬溶酶体,继续自噬进程。 3)对溶酶体降解的抑制:自噬体与溶酶体融合后最终被溶酶体中的水解酶水解,它首先经过囊泡酸化,达到所需的PH值后经多种蛋白酶作用使囊内容物降解,降解产物在细胞内再循环利用。对溶酶体的降解进行抑制,使得被降解的囊泡内容物大量蓄积于溶酶体内,而不能释放出来进入细胞内再循环利用,这也同样起着抑制自噬的作用。因此,蛋白酶抑制剂,如E64d、Pepstatin A等,在抑制溶酶体降解的过程中发挥着自噬抑制剂的作用。E64d和Pepstatin A均属于蛋白酶抑制剂,二者以1:1的比例联用可以抑制自噬。有研究表明,在结肠癌细胞系中联用E64d及Pepstatin A,可明显抑制溶酶体的降解从而阻断自噬的进展,而自噬体的形成并没有受到明显影响。11 、自噬领域的大牛们: 1)YoshinoriOhsumi博士。日本科学家,克隆了第一个酵母自噬基因Atg1以及LC3,主要成果在酵母模型下自噬研究; 2 )Daniel J. Klionsky博士。美国科学家,主要成果在酵母模型的自噬研究。最早在《Science》上发表综述介绍自噬,2005年创办了第一本自噬杂志《Autophagy》;2007年举办了第一次自噬国际会议,为自噬的宣传做了大量工作。 3 )Noboru Mizushima博士。日本科学家,2001年主要报道了Atg5的功能,被认为是哺乳动物分子机制研究的第一环,以及参与克隆自噬标志物LC3,而且制备了一些ATG基因敲除老鼠以及LC3转基因老鼠; 4 )Beth Levine博士。美国科学家,首先克隆了第一个哺乳动物自噬基因Beclin 1; 5 )Guido Kroemer博士。法国科学家,是细胞凋亡和死亡领域中引用率第一的科学家。在细胞凋亡研究中作出了卓越贡献而且涉猎及其广泛。目前也从事自噬研究,例如p53,Bcl2家族与细胞自噬。 6 )Tamotsu Yoshimori博士。日本科学家,2000年克隆了目前广泛使用的自噬标志物LC3文章的通讯作者,而且也参与了2010年ATG5机制研究,是通讯作者之一。在方法学上也有关键贡献。目前主要研究ATG14和ATG16。值得注意的是,上述三位日本科学家合作紧密,克隆了目前大部分的ATG基因,经常共享文章通讯作者。 7 )Patrice Codogno博士。法国科学家,2000年首先证实了PI3K信号通路在自噬的作用,I型抗自噬,III型促自噬,是自噬信号通路的开拓者。 8 )Ana Maria Cuervo博士。美国科学家,是分子伴侣自噬的开拓者。 9 )David Rubinsztein博士。英国科学家,2004年首次报道了mTOR与自噬的关系,抑制mTOR促进自噬。目前利用rapamycin诱导自噬成为经典模型之一。2010年Nature的报道首次证实了自噬对mTOR的负反馈调节。 12 、自噬信号通路: 1 ) KEGG 2 ) Abcam 3 ) CST 4) Enzo 13、我在做自噬课题中的一些心得: 自噬小体的增多有两种可能:一是形成增加即自噬被诱导;另外一种是自噬体成熟受抑即自噬体不能和溶酶体结合。该怎么来判断呢?自噬体增多,也就是“自噬潮”出现的原因一是形成增多,二是与溶酶体融合受阻(如使用了氢化氯喹或氯喹,另外,溶酶体的酶抑制剂和质子泵抑制剂的使用亦有可能影响溶酶体与自噬体或异噬泡的融合),使自噬体不能降解而积聚,这种积聚造成的自噬体增多的效应要大于自噬体诱导剂效应的数倍之多。鉴于这样的原因,单纯的GFP-LC3荧光斑点增多不足以作为自噬激活的证据,可联用多个方法来判断: 1 )加用自噬体与溶酶体融合的抑制剂,如氯喹,观察自噬潮的变化。 2 )或加用LC3和溶酶体示踪物在荧光显微镜下观察共定位情况。 3 )或Knockdown掉LAMP-2基因(溶酶体膜蛋白)。 4 )检测胞浆长寿蛋白的降解。 WesternBlot 检测LC3时除了上述的原因外,还有几个需考虑到的地方: 1 )抗体的亲和力:有报道认为LC3抗体对II型LC3的亲和力较高 2 )结合于自噬体内层膜的LC3-II在与溶酶体结合后被降解。 3 )自噬过程很快,一个自噬体从产生到降解仅需2~3个小时或更短,其中自噬体形成阶段更迅速,数分钟即可完成,而溶酶体降解阶段耗时相对较长。因此,设置多个检测时间点(time frame)是非常重要的。
(通讯员 裴凯)2018 年9月18日,国际知名学术期刊《Nature Microbiology》在线发表了我校蛋白质科学研究团队关于AimR结合底物多肽复合物结构和功能的最新研究进展,论文以“Structural basis of the arbitrium peptide–AimR communication system in thephage lysis–lysogeny decision”为题,阐述了决定噬菌体溶原裂解途径的一类新型分子调控机制。温和噬菌体在侵染细菌后,可以根据环境不同选择进入裂解途径或者溶原途径。最经典的例子是l噬菌体侵染大肠杆菌,l噬菌体基因组上的pL和pR启动子决定着其溶原或者裂解的命运。近年来,科学家在枯草芽孢杆菌中发现了一类新的决定机制:AimR-AimP-AimX决定系统。AimP编码43个氨基酸的多肽,分泌至细胞外被切割成6个氨基酸的成熟短肽(arbitriumpeptide);AimR是信号短肽的受体,同时作为转录调控因子调控aimX基因的表达;AimX是噬菌体溶原途径的负调控因子。信号短肽运至细胞内与AimR结合,解除AimR对aimX基因的调控作用,使噬菌体进入溶原周期。这类决定系统广泛存在于不同类噬菌体中。然而,噬菌体如何识别信号短肽,信号短肽又如何解除AimR与DNA结合的分子机制并不清楚。本研究利用细胞生物学、结构生物学、生物化学和生物物理等多重手段揭示了来源于SPbeta类噬菌体信号短肽的作用分子机制,并通过解析了AimR的晶体结构以及信号短肽结合状态下AimR复合物的高分辨率晶体结构,发现AimR呈现超螺旋结构,结构显示AimR属于RRNPP 蛋白家族(革兰氏阳性菌群体感应系统的关键蛋白),短肽结合在AimR的螺旋空腔里面。通过结构比对,AimR未结合和结合短肽分子均为二聚体,仅有一个轻微的变化,不足以脱离DNA。研究者们发现AimR的N端是结合 DNA的关键部位,但未能捕捉其构象。我校新引进的刘主教授擅长蛋白动态结构分析,团队人员密切合作,通过小角散射等一系列生化和生物物理实验验证了短肽结合下AimR 的N端更加舒张,从而可能使整个AimR脱离靶标DNA。该研究解释了SPbeta噬菌体溶原裂解途径中短肽识别的关键问题,为进一步研究噬菌体对溶原和裂解途径的选择提供重要线索。我校生科院研究生王强和官泽源为该论文共同第一作者,邹婷婷副教授为通讯作者。该研究是和农业微生物国家重点实验室彭东海副教授合作,体现了院室相互融合。同时蛋白质研究团队成员充分合作,研究手段互补。该研究工作获得了华中农业大学自主科技创新基金和国家自然科学基金青年基金项目资助,我校蛋白质平台为该研究提供了强有力的支持,上海同步辐射光源BL17U1、国家蛋白质科学中心BL19U1和BL19U2线站为晶体衍射和小角散射数据收集提供了必要保障。
链霉菌噬菌体ΦC31位点特异性整合酶的结构与功能初步探讨 论文摘要: ΦC31位(略)酶由于能介导携带有attB序列的目的基因位点特异性整合到 哺 乳动物细胞基因组中,因而该系统已成为基因操作及基因治疗的强有(略),该整合酶在 哺 乳动物细胞上介导整合的位点特异性和整合效率仍需进一步提高.而解析ΦC31位点特异性整合酶结构与功能关系是解决上述问题的基础和关键.为此,本研究利用(略)ΦC31位点特异性整合酶结构进行预测,结合分子生物学技术对其结构与功能关系进行初步探讨,其结果如下: 1、利用生物信息学对包含ΦC31位点特异性整合酶在内的`丝氨酸位点特异性重组酶家族30个成员进行同源比对,结果显示:aa1—120为催化结构域,其在整个家族里是保守的;aa291-359含有许多带电残基(22aa)和极性残基(10aa),预测为蛋白多聚化相关区域,4个保守的Cys残基位于aa353—405,该区域可(略)合相关区域,aa416—504为Leu富含区,包含了14个Leu,aa457—527预测为α螺旋结构. 2、依据ΦC31位点特异性整合酶结构预(略)T22b-ΦC311-528等八个截断突变体质粒.这些质粒分别与ΦC31报告质粒共转在体内进... TheΦC31 site-specific integrase can promote gen(omitted)ration of plasmids carrying attB into native mammalian sequences. Consequently it has become a powerful to(omitted)e manipulation and gene therapy. However, the specificity and efficiency of integration in mammals need to be (omitted)proved. Analysis the relationship between structure and f(omitted) theΦC31 integrase is the basis and key for solving above problems. To this end, this stu(omitted)informatics to forecast the structure of theΦC3... 目录:缩写词 第5-6页 中文摘要 第6-7页 英文摘要 第7-8页 前言 第9-14页 材料和方法 第14-30页 ·.材料与试剂 第14-20页 ·.方法 第20-30页 结果 第30-44页 ·.ΦC31整合酶基因同源分析及结构预测 第30-32页 ·.ΦC31整合酶及其截断突变体表达质粒构建 第32页 ·.ΦC31整合酶及其截断体体内活性检测 第32-34页 ·.ΦC31整合酶及其截断体的表达与纯化 第34-36页 ·.ΦC31整合酶及其截断体蛋白DNA结合功能域的检测 第36-40页 ·.ΦC31整合酶及其截断体蛋白构象的远紫外CD谱测定 第40-44页 讨论 第44-47页 小结 第47-48页 参考文献 第48-52页 综述 第52-60页 参考文献 第57-60页 致谢 第60-61页 更多相关阅读推荐: 毕业论文
你好,细菌遭遇噬菌体会有裂解或溶原由细菌细胞膜的构成有没有能够让世菌体识别到的酶而决定。
细菌遭遇噬菌体会有裂解或溶原由环境不同决定温和噬菌体在侵染细菌后,可以根据环境不同选择进入裂解途径或者溶原途径。最经典的例子是l噬菌体侵染大肠杆菌,l噬菌体基因组上的pL和pR启动子决定着其溶原或者裂解的命运。近年来,科学家在枯草芽孢杆菌中发现了一类新的决定机制:AimR-AimP-AimX决定系统。AimP编码43个氨基酸的多肽,分泌至细胞外被切割成6个氨基酸的成熟短肽(arbitriumpeptide);AimR是信号短肽的受体,同时作为转录调控因子调控aimX基因的表达;AimX是噬菌体溶原途径的负调控因子。信号短肽运至细胞内与AimR结合,解除AimR对aimX基因的调控作用,使噬菌体进入溶原周期。这类决定系统广泛存在于不同类噬菌体中。然而,噬菌体如何识别信号短肽,信号短肽又如何解除AimR与DNA结合的分子机制并不清楚。
参考一下:关于改善 城区公共交通拥堵状况的对策建议 “十一五”以来,全市上下紧紧围绕建设西部经济强市、特色文化大市、绿色生态名市三大目标,大力推进“两基地一中心”建设,国民经济呈现跨越发展态势,特别是中心城市的建设步伐进一步加快。目前,榆林中心城区面积已扩展到52平方公里,城市人口增加到42万,成功创建省级卫生城市,综合承载力明显提升。新的榆林市城市总体规划(第四版)正式批准实施,人口规模近期50万、远景100万,城市规划区2214平方公里,中心城区400平方公里的晋陕宁蒙区域中心城市框架全面确立。但是由于榆林城区规模的扩展,人口和车辆的急剧增加,在城区主要路段和特殊时段出现了堵车现象,已严重影响了城市居民的工作生活,加之城区公交基础设施和规划道路相对滞后,车辆拥堵已成为城市发展的瓶颈问题。为了切实改善城区交通状况,缓解公交停车及长途客运站建设瓶颈,进一步健全城市交通体系,我们对榆林城区交通状况进行了充分调研,现报告如下:一、城区公共交通现状(一)基本情况。我市主城区有常住人口42万,加上流动人口约有55万人左右,城区现有各类机动车58600余辆,其中汽车约27600余辆,有摩托车、三轮34000余辆,有非机动车约8万辆左右。区外车辆进入榆林市区的车辆日流量近10000余辆。近年来,随着我市管理力度的不断加大,城区总体市容环境有了较为明显的改观,但城区内车辆行驶无序、乱停、乱放等现象还屡见不鲜,交通事故时有发生,特别是上下班高峰期城区交通拥堵问题,已影响到城市的整体形象。建立以人为本的城区公共服务体系,从根本上解决交通拥堵已成为十分迫切的社会问题。(二)长途客运站。榆林城区现有两个汽车客运站,一个是位于榆阳中路的榆林汽车站,另一个是位于迎宾大道的榆林汽车站客运北站,都隶属于市恒泰汽车运输集团公司。榆林汽车站始建于上世纪50年代,是榆林最大的汽车客运集散地,主要经营发往榆林以东、以西、以南的客运车辆,日发送旅客8000多人次,多年来虽多次进行改建扩建,但由于有效使用面积较小,停车场地紧张,致使站内设施及综合服务功能落后,与群众的需求不相适应,且该站所处位置已成为榆林经济中心,人口密集,车流量大,交通拥堵严重。2007年为了缓解榆林汽车站停车场地紧张和城区交通拥堵问题,市恒泰汽车运输集团在迎宾大道旁租赁官井滩村15亩土地,建设榆林汽车站客运北站,主要经营发往榆林以北及过境客运车辆,暂时缓解了榆林汽车站的运输压力和城区的交通拥堵问题。但该站面积狭小,综合服务功能有限。(三)城市公交。目前,榆林城区有公交线路13条,营运里程187公里,有公交车196部,长途客车350辆,共有出租汽车公司9家,出租汽车998部。2009年榆林公交共完成公交客运量8912万人次,运营里程达741万公里,车厢服务合格率98%,正点率97%,乘客满意度96%。出租汽车完成客运总量2000万人次。主要存在的问题:一是公交站场设施落后。各条线路公交车基本没有场站设施,处于“马路”作业状况;二是公交线网布局不完善、站点设置不合理,部分区域公交吸引力较低。按照建设部每万人拥有12标台公交车辆的部额标准,建成区人口以42万计,中心市区应有公交车辆480余部,而榆林市公交公司目前拥有车辆还不到标准的三分之一;三是车况较差。现有车身太短,座位太少,空间狭窄,高峰时期非常拥挤,很容易发生交通事故,存在严重的安全隐患;四是从业人员素质层次不齐,服务水平低下;五是公交建设财政投入较少,社会效益得不到显现。二、对策建议结合实际,针对存在的问题,提出如下解决公交、长途客运站及城区交通拥堵的对策建议:(一)实施公交优先战略,加快推进公交及长途客运站建设。随着我市经济社会快速发展,城区公交和长途客运站建设已明显滞后,成为制约城市发展的瓶颈。按照榆林市人民政府2010年第36次专项问题会议《关于榆林城区汽车客运站及公交车站建设有关问题的会议纪要》精神,加快推进公交优先战略,建议加快启动城东、城南、城西、城北长途客运站及公交车站建设,达到长途客运和城市公交无缝交接,方便旅客,实现市政府“一年内缓解城区交通拥堵,三年内从根本上解决城区交通拥堵问题”的目标任务。同时,制定出台具体的《榆林市优先发展城市公共交通的实施意见》,确立城市公交在城市交通中的优先地位,给予公交企业财政补贴,鼓励群众乘座公交车,提高交通资源利用效率,逐步改善城市交通环境。(二)合理改造城区十字路口,提高车辆通行能力。目前由于主城区的人民路与文化路、人民路与长城路、榆阳西路与长城路、榆阳西路与常乐路、榆阳西路与航宇路、文化路与保宁路、文化路与青山路、文化路与柳营路等十字路口直行车辆与右转弯车辆共用一条道路,一些直行的车辆遇红灯等候放行时占据了右转弯车辆的去路,导致许多右转弯的车辆也被迫排队等候。这样,直行车辆与右转弯车辆混在一起,往往一排就是一长溜,塞车现象几乎天天发生。经对比分析,建议对新老城区容易发生拥堵的各十字路口处四面路牙石(人行台阶)进行放大弧度优化改造,即在上述各个十字路口附近的直行车道右侧改造路牙石,再增辟一条右转弯车道,以减少右转弯车辆“被排队”现象。同时,可以拆除十字路口处约30米绿化带,增加通行车道。(三)完善公交集散系统,配建公交服务设施。随着城区规模的不断扩大,人流量的不断增加,现有交通站点已不能满足市民正常出行的需要。加之目前城区道路没有港湾式停靠站,公交车或出租车仍在行车道路上下客。没有出租车固定行程点。由于出租车固定行程点设置过稀,即招即停现象普遍,加剧了交通拥堵。本着既方便市民出行,又减少城区交通压力的原则,建议兼顾考虑以下几方面问题:一是加强对公交车的管理,规范发车、行驶、停靠秩序,为市民出行提供安全、方便、快捷的交通服务;二是公交线路设置的站点,必须设置港湾式候车站,方便车辆通行,减少造成后面车辆速度滞缓的现象;三是在城郊结合部位设立短途客运站,限制部分客运、货运车辆进入市区。取缔非法营运的残疾人三轮车和“摩的”和三轮货运车辆,有效控制交通总量,减轻道路拥挤程度;四是要科学规划,合理布局,方便出行。加快出租车、扬招点的建设,在客流密集的车站、宾馆、医院如大型超市以及人流频繁的学校、商店、住宅小区出入口设立规范的候车站点。并尽快建立出租车区级调度中心,开展预约叫车服务。(四)优化人行道路,理顺人行秩序。城市要发展,道路交通要畅通,必须调整现有交通结构,改变原有的混合交通方式,确立立体交通思路,建立立体交通模式。建议近期内在新建路一完小门前、市一中、南门口和长城路人民路路口、广榆路路口建设人行过街天桥,加强对长城路古城市场门前和新楼巷过街天桥的管理,分流过往行人,缓解机动车、非机动车、行人混行的矛盾,消除交通安全隐患。 (五)打通城区主干道路,完善路网结构。现有城区内的道路由于受客观条件限制等因素要拓宽改建有一定难度,但瓶颈路段一定要下大决心,以人为本,打通文化路两端延伸、长城南路延伸、建榆南路、榆林大道、榆阳西路、开光路大桥和北环路等瓶颈断头路,启动建设开发区与上郡路两座连接大桥建设,完善道路交通网络。同时,提高城区道路等级、按功能实行机非分离,主要道路交叉口要增设分流车道,疏导交通流量。从规划先导上,保证交通畅通,提高城市文明形象。(六)优化完现有公交路线,减少公交盲区。榆林公交除了线路少,路线分布也不合理,基本上城市次干道都不覆盖,增加环线公交,开通南北、东西快速公交,方便市民出行,尽量服务公交盲区,因此,建议对城区公交线路进行优化整合,并增加线路和车辆,减少公交盲区,实现公交与长途客运车辆与的无缝换乘,方便群众出行,提升公交服务功能。(七)完善交管信息平台,强化城区交通管制。随着城市建设的不断发展和城市范围的进一步扩大,交通管理难度日渐加大,建议加快完善城市交管设施,强化交通管理手段,积极引进和购置先进的灯控、遥控、电子眼等设备,提高交警快速处置交通事故能力,加强机动调控能力。同时,交警部门要借助即将建成的道路交通智能化管理平台,实施对动态交通的全天候监控和指挥,以及对交通违法行为的非现场执法,有效规范交通参与者的交通行为,形成全方位、多层次的道路交通管理格局。(八)加快建设城区停车场,解决城区停车难。仅考虑单行、分道来解决行车拥堵问题,而不考虑停车场建设,将制约城区商业发展,难以从根本上解决交通拥堵。因此,建议城市规划、建设部门要将停车场的设置作为城市规划和建设的重要内容,做到依法规划、严格验收,在城市中心、商业区、居民区、宾馆酒店建设停车场,有足够的停车空间。同时,要恢复挪作他用的已建停车场的停车功能,切实解决城区停车难问题。(九)优化城市服务设施布局,分化城区人流、车流。目前,榆林主要的医院、学校、商场大部分集中在步行街、新建路和长城路主城区,形成密集的人流和车流,造成交通拥有堵,而其他区域服务设施相对滞后,车流较少。建议:一是对城区人流量大的医院、学校、商场进行合理优化布局,在主城区以外增加幼儿园、学校数量,将二院从步行街迁往西沙商务区建设,在红山规划建设榆林三院和高级中学;二是以市场化的方式引导企业在西沙、东山、红山、开发区建设大型商贸中心,分解主城区交通压力;三是对现有中型以上的居民小区改造增加幼儿园、超市和社区医院等服务设施,对新开发居民区必须规划布局齐全的服务设施,大型居民区要规划小学方可建设,以此分化城区人流、车流,解决交通拥堵,方便市民。
堵车是一种拉动经济增长,解决社会就业问题的方式。因为堵车,才有大量的时间磨蹭在路途中,本可以一天完成的工作,拖成了两天,三天。劳动效率降低了,才有了更多的工作要找人做,才有了更多的就业岗位。因为堵车,才使得上下班的人避开下班拥堵的高峰期,从而让寄居在写字楼旁的外卖们经常忙的不亦乐乎。与此相关的,堵车让物流业的发展成为迫切,市场的大门越开越大。因为堵车,让太多的车换了一套又一套的音响设备,买了一叠又一叠的CD。因为堵车,让太多的人开始习惯边抽烟边等待,在无聊中静静赞助着我国的烟草事业。因为堵车,让手机和车载电话变成必备的随行设施,自己排遣着寂寞的同时,电信事业蓬勃发展。因为堵车,……堵车成为城市的一种现象的时候,也成为了一种城市的时尚。然而,堵车,是很多都市人无法承受之痛。据《中国城市畅行指数2006年度报告显示,在北京、广州等25个城市进行的交通通畅度调查中,中国城市畅行指数仅为54.1分,未达及格线。市民上下班时的汽车平均行驶速度仅为23.5公里/小时。4月5日,沈阳市沈北新区某路段,因车辆肇事,造成2000余辆车堵成一锅粥;4月11日,重庆一辆客车坏在路上,导致两路口单行道交通压力过大,出现了上千市民步行上班的壮观景象……据中国社会科学院数量经济与技术经济研究所张国初测算,堵车浪费了北京市的运输资源,并使运输效率降低,消耗的社会成本约为每天4000万元人民币,相当于每年146亿元。全国一年因交通拥堵造成的损失约1700亿元,并逐年上升。放眼世界,“很受伤”的不仅是中国,美国得克萨斯州一项研究显示,美国因交通堵塞,平均每年造成的经济损失高达631亿美元;英国伦敦每周为此浪费的生产力价值高达290万美元,中国香港每年由此造成的经济损失高达3亿多美元。
问题一:学校门口为什么总堵车 现在很多家庭都有汽车了,家长接送子女上学或放学,也可能会有在校老师的车进出,车多了,自然就容易堵车 问题二:观察学校门口,上学放学的时候学校门 *** 通堵塞的原因是什么?你应该这样解决? 原因当然是学生流动大啊...各种接送各种去溜达...怎么解决,只能扩大停车位或者禁止在那里停车吧,毕竟只有有利于学生安全,就是这样交通有点不便了 问题三:“如何处治校门口拥堵现象"调查报告 为了缓解学校拥堵和交通的压力,学校要及时通过家长会、校信通等有效沟通方式,密切家校联系,通知家长调整了各年级放学时段,可根据年级或离校门口远近,采取错时放学,分批出门,以疏导和分流放学人潮,避免拥挤。每天学生放学时,一二年级的学生们率先排好队,十分钟后,3-6年纪 *** 整队,分别在正副班主任老师的指引下按照班级顺序依次走出校门,规定路队走向和指定接送点,学生中途不得私自离队,带队教师全程看护学生到达指定的安全区域。不同年级的学生放学时间不同,避免接学生的家长同时堵在校门口。对于校门前各种车辆对放学学生安全的威胁,每天还有两名教师在校门口指挥交通,只要我们认真对待,校门口拥堵的现象肯定会得到改善。路是人走出来的。解决校门口的拥堵,要认真想,切实做。不走,终难以出现顺畅之路。 问题四:为缓解交通高峰期学校周边交通拥堵问题 近年来,购车消费大大方便了人们的出行,提升了人们的生活质量。但与此同时,私家车的普及造成了交通拥挤、环境污染等一系列问题,特别是各中小学校上学、放学期间,大量的接送车辆已经给学校周边的交通秩序带来了一片混乱,严重影响了中小学生的正常上放学。 主要现象和问题有:不少中小学校大门口正对公路,这些地方的学校每逢上学、放学或周未学期放假时间,校门口就会涌来不少各式各样接送学生的车辆,挤满了需正常通行的公路边;部分家长直接将车停在学校大门口阶梯通道处,堵住通道;不少家长接完孩子后,直接原地调头,加上机动车、自行车逆行,路面现场混乱不堪。学校周边无机动车临时停靠位,前来接送的小车占道停车等候,学校门口两侧人行道上摆满了摩托车、电动车,部分家长则直接把摩托车、电动车停放在两侧车道马路上,过往公交车、小轿车越线行驶。另外,部分学校周边行人过街设施不完善,学生过街存在安全隐患。 建议: 1、加强路面监管。根据辖区实际情况,交警部门应加强对中小学校周边交通环境进行排摸,对地处复杂路口、路段,交通秩序较乱的学校,安排警力进行整治,在学生上、放学高峰时段,增派警力加强学校周边道路的交通疏导,及时查处校门前机动车乱停乱放、违法鸣号等违法行为,并联合相关职能部门,对学校周边道路的乱设摊、乱堆物等行为进行综合执法,确保师生上学放学有一个良好的交通环境。同时,针对学校周边路网情况,合理施划机动车临时停靠位,方便学校接送车辆的停靠。 2、提倡“错时上放学”。目前北京、南京、宁波、绍兴、泉州等地已实行了错时上放学制,缓解了校门口部分交通拥堵压力,取得了较好的效果。建议教育部门去各地了解和学习他们的先进经验,根据温州具体情况和学校具体课时安排及进度,实行错时上放学制度,以有效缓解交通压力,尤其是改善校门口的拥堵问题。同时,要深入开展“畅通工程”工作,开设校车“绿色通道”,促使学生接送车辆畅通出入校门。 3、普及安全教育。在加强师生交通防范教育的基础上,要切实加强对家长进行交通安全方面的普及教育,大力提倡交通文明,在全社会形成自觉遵守交通法规的良好氛围。尤其是要对乱停放、乱占道,堵塞通道、原地调头的家长进行深刻的剖析教育,使其认识存在的交通安全隐患,并充分利用“安全教育日”和“安全教育周”,从加强交通安全入手,组织观看安全教育图片,出版安全教育专刊,进一步提高家长的安全意识和防范能力。 问题五:作业啊(关于如何解决学校门口的交通堵塞问题 由上述分析可知,造成城市交通拥挤堵塞的原因很多,所以解决城市交通问题是一个系由上述分析可知,统工程,应从如下“三个层次、两个方面”着手,同时采取措施。所谓三个层次,一是从城市规划、土地利用的角度,避免城市人口、城市功能过度集中造成交通总需求超过城市交通容量极限,避免城市商务区土地利用强度过大而使城市交通问题无法解决;二是从交通结构的角度,采取各种有效措施优先发展公共交通,形成以公共交通为骨干的大运量、快速度的公共交通系统,合理地利用城市有限的土地资源和交通设施;三是通过提高路网容量,借助科学化、现代化交通管理手段充分有效地利用现有路网等综合措施,使现有交通基础设施发挥最大作用。 所谓“两个方面”就是从交通需求和交通供给两个方面同时采用措施。50年代以来,尽管世界各国采取了各种各样的城市交通拥挤对策,城市交通拥挤问题一直没有得到很好的解决。长期的实践已经使人们认识到,在解决交通供求不平衡的矛盾中,仅从交通供给一个方面采取一些个别措施无济于事,有时还可能导致完全相反的结果,必须从供求两个方面同时采取措施〔(6)〕。 综上所述,解决交通问题的关键有两点:一是考虑供求两个方面;二是从三个层次采取综合措施。 四、解决城市交通问题的几点建议 1.建立可确保科学决策的体制 解决城市交通问题必须从整个系统出发。上述“三个层次、两个方面”的基本思想,缺少哪一层次和方面,都不能从根本上解决问题。即便是考虑提高道路通行能力,如路口改造等,也不能就路口论路口,而要进行路网分析,避免“缓解了局部交通,扩大了堵塞面积”的决策失误。 无论从哪个层次上研究解决问题,都应该以交通规划理论、交通经济学原理等科学理论为依据,制定出多个可行方案,进行事先的比较分析和对策效果预测。在此基础上,以专家学者为主导进行论证。市 *** 宜设置长期的有一定规模的专家咨询委员会, *** 决策部门根据论证的课题内容,从常设的专家咨询委员会中组成论证委员会,论证委员会直接对市 *** 负责。没有科学论证这一环节,则不可能实现真正的科学决策。以路口改造为例,究竟哪些路口需要改造,应该采取何种对策解决某个路口的交通拥挤问题?采取对策之后,交通拥挤的缓解效果如何?这些问题必须在对策实施之前进行科学论证,有明确的结论。 2.作好城市设计和土地利用规划 从城市容量极限的角度出发,进行城市设计,制定土地利用规划。应该在充分论证的基础上,确定城市发展轴、城市发展模式、产业布局、土地功能区分等,对城市发展进行管理。作好交通与土地利用的协调规划。 交通与土地利用相互联系、相互影响,交通发展与土地利用相互促进。从交通规划的角度来说,不同的土地利用形态,决定了交通发生量和交通集中量,决定了交通分布形态,在一定程度上决定了交通结构。土地利用形态不合理或者土地开发强度过高,将会导致无法满足的交通需求。从土地利用的角度来说,交通的发展改变了城市结构和土地利用形态,使城市中心区的过密人口向城市周围疏散,城市商业中心更加集中、规模加大,土地利用的功能划分更加明确。同时,交通的规划和建设对土地利用和城市发展也具有导向作用。 3.制定好城市交通战略规划 制定好城市交通战略规划是解决城市交通问题的关键环节和实现资源最佳配置的重要保证。应统筹考虑市郊铁路、地铁、准快速交通网及道路交通等,从定性分析和定量计算两个方面研究确定各交通方式的合理分担率及交通基础设施建设的优先顺序。应把远期规划和近期项目结合起来,近期的所有举措都应与城市交通战略规划相一致,都应是实现战略规......>> 问题六:每当碰到学校门 *** 通堵车你的感受是什么 就像你在公共厕所,外面好多人在等你的坑,而你却便秘。 问题七:关于学校门口拥堵的作文 600字 学校门前是一条宽宽的马路,从我上一年级开始,每天上下学都沿着这条马路走回家,汽车不时地从我身边奔驰而过,走在这宽宽的马路上,我心里舒服极了。 可每到放学时我发现,宽宽的马路一下子变得拥挤起来,我觉得很奇怪,马路这么宽,为什么会拥挤呢?带着这个疑问,我对拥挤的原因进行了调查。 调查:从学校门前到马路对面宽约30米,拥挤的道路大约占路面的20米。 分析:按说这么宽的马路,不应该拥挤。于是我观察了很长时间,每小时大约有2000人经过,有100多辆汽车通过,车辆和人都不是很多,我从调查中还发现,虽然家长接送孩子,孩子安全了,但同时也带来了许多问题。 道路拥挤的原因主要有: A.接孩子的家长比较多; B.很多家长不自觉,不在接送区等,而在学校门口挤着; C.实验小学和镇中同时放学,人都挤到一块儿了; D. 学校门口有很多小摊小贩卖东西。 大量的事实告诉我,学校门口的道路拥挤,是人为因素造成的,并且与学生家长有很大的关系。由于在学校门口接学生的较多,造成交通不畅,所以人们也浪费了许多宝贵的时间。 建议:为了维护学校门前的交通秩序,以后学生家长应该在接送区接送,交通部门要派出监督员和学校有关部门合作,制定具体措施;市政部门要加强对小商贩的管理,让他们远离校门;小学应该和镇中协商一下,错开放学的时间。 让我们大家都行动起来,创造一个畅通无阻的交通环境! 问题八:校门 *** 通拥堵何时休 大城市交通拥堵是世界性通病,只要大城市有吸引力,就会有拥堵,永远也不会畅通无阻。 历史上纽约、伦敦、东京等大城市都经历过严重的交通拥堵,当年的拥堵比我们现在还堵得厉害! 现在这些城市也仍然拥堵,只不过比过去好些了,主要原因是城市分散、发展公共交通(特别是地铁、市郊铁路等轨道交通)以及小汽车不再是市中心区的主要交通工具(通过经济等手段调节)。 重庆要想缓解交通拥堵也必然要走以上几条道路。 问题九:关于上下学校门口堵车现象的政治小论文 关于上下学校门口堵车现象的政治小论 这么肯定 问题十:校门 *** 通情况的调查和建议300字作文 日常生活中,许多人不注意交通安全,而鲁莽行事,司机驾驶着汽车一跃而过,在那飞奔的过程中,留下了什么,只留下了飘扬的尘埃吗?你是否看到身后隐藏着莫 大的恐惧与伤感;喝醉的司机在“晨曦”的朦胧中颠着,昏昏沉沉中,没有任何思想的你,怎能冒如此险.当我看见“司机一滴酒,亲人一行泪”的标语,我为你们 的无知而深感惭愧,难道在你们心中,它就是一张白纸吗?只代表着空虚吗?这使我陷入了沉思! 曾经,在一个炎夏里,一个小男孩为了捡一个心爱的小 球,不顾一切的直奔马路中央,也许,他还小,单纯的思想并没想到那可悲的后果,真是不幸,一辆卡车飞奔而来,把他压得粉身碎骨,把他永远压在土地深层,父 母的泪犹如倾盆大雨,从天而降,又有谁能够听到他们的呼唤,上天是仁慈的,同情之心油然而生,可又能怎样,只有无可奈何的哀叹,忍受着痛苦,真是可悲啊! 一辆载重汽车由于超载以至被滚下那万丈深渊,那轰隆声回响山谷,可那位年轻的司机却抛弃一切毫无声息的走了,走得那样伤感,那样的悲痛. 那一件件
影响英语听力因素的分析论文
[摘要]本文研究了影响听力的主要因素,并且从影响听力的主要因素入手探讨了提高听力和理解能力的方法及途径。
[关键词]英语听力 影响因素 解决方法
听说在交际中占有重要的地位,人们的交流活动主要通过听说来进行,据美国保尔兰金教授统计,听在交际中占的比例最大,占人们日常言语活动的45%,听是人们在语言交际中的最基本的过程,只有捕获了信息,才能对信息做出反应,才能进行下一步深入的语言交流。
随着各类考试对听力测试的加强,人们对听力的重视程度也越来越高。那么怎样才能提高英语听力水平呢?我们首先要研究一下影响听力的一些主要因素。
一、语调和语流
汉字是象形和表意文字,单字单音,有阴平、阳平、上声、去声四个音调。英语是一种拼音文字,两者在语音语调上的差别很大。尤其是一些音在英语中存在,而在汉语中不存在。如:好多学生很难区分/v/与/w/的发音。
英汉两种语音系统在读音方面也存在着很大的差异,汉语中没有辅音结尾的现象,学生在学习英语语音时往往受母语影响,常出现词尾加元音、拖音的情况。产生语音迁移以及迁移程度大小与以下几个方面有关:(1)发音差别较大;(2)汉语中没有而英语中有的音。
二、音的变化
音的变化指的是英语单词在一个意群中的读音发生变化。音变主要包括连读、不完全爆破、增音、省音、同化等,这些音变的产生,对初学者的听力水平影响很大,因为初学者很难掌握这些发音规律。下面分别来讨论一下音变对听力的影响。
(1)连读同一个意群相邻的前一个词的词尾音常可以与紧接它的一个词的词首的音连起来读,这叫连读。它是一种很自然的滑音,连读必须是在同一意群中。主要有下面三种情况:
a.相邻的前一个词以辅音结尾,后一个词以元音开头,即:辅音+元音
b.相邻的前一个词以字母r结尾,后一个词以元音开头,这时,/r/要读出来,并与这个元音连起来念,即:r音节+元音
c.相邻的前一个词尾和后一个词的词首都是元音时往往可连读,即中间不停顿,听起来好像一个词,即:元音+元音
(2)不完全爆破
不完全爆破是指爆破音发音过程中失去爆破,爆破音的发音过程分为成阻—持阻—破阻三个过程,但是在有些情况下,这些爆破音在发音时只有前两个过程而失去破阻过程,叫做不完全爆破或者失去爆破,主要有下面几种情况:
a.爆破音中的任何两个音素相邻时,前者发不完全爆破音如:
She has a ba(d) cold.
b.爆破音在摩擦音前面时不完全爆破。如:
Irea(d) the book yesterday.
c.爆破音在鼻辅音前面时不完全爆破。如:
It ma(d)eme happy.
(3)省音。当单词中某个或某些音因受影响而不发音。
(4)同化。音的同化指的是一个音受到相邻的音的影响,使它变得与其相同或相似;或者两个音互相影响,变为第三个音。
三、播放材料的语速
听材料的播放速度会影响学生听的理解能力。在考试过程中,如果不能跟上朗读者的语言速度,学生就难以抓住材料的中心意思 。为此教师要对学生进行语速的训练,主要包括两方面:
(1)提高学生的朗读速度。如果学生语速太慢,就不适应较快的语速。
(2)多听适合稍高于学生语速水平的录音。
四、文学语言
文学语言往往要把表达的意思间接的表达出来,因而会影响学生对真正含义得理解,如明喻、暗喻、拟人、夸张、委婉语等。要克服这些文学语言在听力上的阻碍,就应该掌握英语当中的修辞手法。
五、同音词和多义词
同音词指发音相同意义不同的词汇,在听中,容易造成意义混淆。同音词由于发音相同而无法对单个词进行听力辨认,在口语交际中,解决这个问题的唯一办法是把握上下文的语言环境,因为只有语言环境能告诉听者该词的确切词义。在书面交际中,同音词对交流几乎没有影响,因为音同而形不同。多义词:一词多义是英语中常见的现象,也是影响听力的一个因素。有效的方法也是根据上下文的意思推测多义词的词义。
六、语音语调
学生自身的语音语调会直接影响学生的听力,普通话是中国人最容易理解的语言,一个讲普通话的`人肯定要比一个讲方言的人理解普通话更透彻。如果学生的语音语调不准确,不但使别人听着费劲,他自己对正确语音的辨别能力也会受到影响。因此,在教学当中要注意培养学生正确的语音语调。
七、技巧
掌握一些英语听力的技巧,会有助于听力的提高。因此教师要对学生听的技巧有意识的进行训练,包括:
(1)提高整体理解能力。
整体理解能力是训练学生抓中心大意的能力,要引导学生抓关键,抓中心。
(2)推断能力。无论是在日常交际中还是在考试中,学生都会遇到生词。因此,对生词的推断能力是学生不可缺少的基本功之一。为此,在教学过程中,应该把含有适量生词的材料给学生听,以此来培养他们语境断词的能力。
八、对所听材料的熟练程度
实践表明,学生对所听的到的材料越接近他们的生活,他们就越容易听懂。例如在《博学英语听说教程》第二册(复旦大学出版社)中有这样的习题:要求学生说出所听到的句子中所描述的人或者事物。
1.He is a person who maitains law and order. (a lawyer)
2. He is a person who helps you to lear at school. (a teacher )
因为学生对律师不如对教师更熟悉,因此,学生们对第二个题都能很快做出答案, 可是第一个就要思考一番。
九、英音和美音
英语语音语调最重要最常见的就是英音和美音,就语音的层面而言,学生必须了解这两种不同的读音。当然,学生应该把其中的一种作为学习的对象,但是,由于交际活动的复杂性,他们在实际学习生活中必然遇到不同的语音,这也就要求他们必须熟悉这不同的语音。因此,在教学过程中,教师要有意识的让学生去感受不同的语音,如有条件,学生还应该接触更多人士的英语发音。
总之,影响听力的因素是十分复杂的,提高听力水平就要首先搞清楚影响听力的因素,这样才能对症下药,找到解决问题的有效方法,才能更快更有效的提高听力水平。
参考文献:
[1]Barbara M.Strang A History of English[M]. Methuen Co.LTD. 1970.
[2]Daniel Jones. Sixth edition. An outline of English Phonetics[M]. EP Dutton co.
[3]J.Richards etal 1985. Longman Dictionary of Applied Linguistics. Longman LTD.
国外外语学习策略研究始于20 世纪60 年代,受认知心理学发展的影响极大。最先进行学习策略研究的是Aron Carton。1966 年,在Carton 出版的The Method of Inference in Foreign Language Study 一书中,他首次提到不同的外语学习者运用不同的推理方法学习,开了外语学习策略研究之先河。第 1 页1.1 二十世纪七十年代———学习策略研究的初期阶段这一时期的代表人物主要有Rubin 和Naiman 等。继Carton 之后,Rubin 开始着手研究成功外语学习者的学习策略。在此阶段,人们主要是研究成功外语学习者的共同特征,曾确定了一些成功外语学习者的共同特征。Rubin 指出:外语学习者在心理特征和学习方法上有许多惊人的相似之处[1]。Naiman 等把学习策略与认知风格、个性、智力、语言潜能、态度等方面结合起来进行研究[2]。初期阶段的学习策略研究从宏观的角度,在方法和研究成果上都给后来的研究打下了良好的基础,但也存在两个缺陷:第一,通过实际观察/问卷和访谈调查等手段发现的学习策略尽管数量很多,但并不全面,也不系统。很多学习策略从外部是无法观察到的,而学习者也很难准确地描述自己所使用的学习策略。第二,没有理论指导,我们就不能肯定哪些是基本的学习策略,哪些是辅助性的,也不清楚学习策略之间存在的密切关系。
初中物理知识在社会生产和生活中的应用 物理是与人类生产和生活最为密切的科学。在物理教学中如何将物理知识与生产实践和生活实际相联系,使学生尽可能理解物理知识在生产实际和生活实际中的应用,也就成了物理教师义不容辞的义务。 一、力学知识的广泛应用 1.重力的应用 我们生活在地球上,重力无处不在。如工人师傅在砌墙时,常常利用重锤线来检验墙身是否竖直,这是充分利用重力的方向是竖直向下这一原理;羽毛球的下端做得重一些,这是利用降低重心使球在下落过程中保护羽毛;汽车驾驶员在下坡时关闭发动机还能继续滑行,这是利用重力的作用而节省能源;在农业生产中的抛秧技术也是利用重力的方向竖直向下。假如没有重力,世界不可想象,水不能倒进嘴里,人们起跳后无法落回地面,飞舞的尘土会永远漂浮在空中,整个自然界将是一片混浊。在讲授重力时,要让学生展开热烈的讨论,充分挖掘学生的想象力,知道重力与我们的生产生活实际密切相关。 2.摩擦力的应用 摩擦力是一个重要的力,它在社会生产生活实际中应用非常广泛。如人们行走时,在光滑的地面上行走十分困难,这是因为接触面摩擦太小的缘故;汽车上坡打滑时,在路面上撒些粗石子或垫上稻草,汽车就能顺利前进,这是靠增大粗糙程度而增大摩擦力;鞋底做成各种花纹也是增大接触面的粗糙程度而增大摩擦;滑冰运动员穿的滑冰鞋安装滚珠是变滑动摩擦为滚动摩擦,从而减少摩擦而增大滑行速度;各类机器中加润滑油是为了减小齿轮间的摩擦,保证机器的良好运行。可见,人类的生产生活实际都与摩擦力有关,有益的摩擦要充分利用,有害的摩擦要尽量减少。 3.弹力的应用 利用弹力可进行一系列社会生产生活活动,力有大小、方向、作用点。如高大的建筑需要打牢基础,桥梁设计需要精确计算各部分的受力大小;拔河需要用粗大一些绳子,防止拉力过大导致断裂;高压线的中心要加一根较粗的钢丝,才能支撑较大的架设跨度;运动员在瞬间产生的爆发力等等。 可见,物理力学知识生产和生活实际中是很有用的,从宇宙天体到微观的分子、原子处处存在着各种各样的力,教师只要将课本知识与生产生活实际有机地结合起来,就能极大地激发学生的学习兴趣,从而培养他们树立崇尚科学、研究科学、应用科学精神。 二、热学知识的应用 天气的阴晴、冷暖与人类的各类活动息息相关,包含了很多的物理热学知识。如人们常喝开水、吃熟食,需要对水和食物进行加热,而加热过程中就需知道燃料燃烧或电力加热的基本知识;炎热的夏天在地上撒些水,靠水分的蒸发达到降温的目的;严寒的冬天如何保暖,汽车发动机常用水来散热,保护秧苗不被冻坏而往往采用在夜间向稻田里灌水,都充分利用了水的比热大这一特性;水稻生长在夏季,是由于水稻是喜高温的植物;各种机械轴承、火车轮箍的制造是充分利用固体的热胀冷缩原理。这些都是热学知识在生产生活中的重要应用。 答案补充 三、光、声现象的应用 人类生存需要光。白天靠阳光,夜间需要灯光,设想宇宙无光,整个世界将陷入一片漆黑,所有生物将无法生存,由此可见光的重要性。然而光到底遵循什么规律,人类怎样利用这些规律为自己服务,这是人类研究光的目的所在。如日月食现象中遵循的是光在同一均匀介质中沿直线传播;教室里通常用日光灯管而少用白炽灯,除为了节省能源外,更重要的是白炽灯这种光源容易形成阴影,而日光管是平行光,可以避免阴影使我们能够很好的工作学习;夜间行驶的汽车内不开灯是为了避免挡风玻璃反射光而影响驾驶员的视线,汽车的反光镜用凸镜而不用平面镜是为了扩大观察范围,近视眼病人要佩戴凹透镜是为了矫正物体成像在人的视网膜上,手电筒能“收光”是利用凹透焦点发出的光能平行射出。另外,教室的长度限制10m左右是避免原声、回声两次声音,从而使两种声音叠加在一起,加强原声;两山距离和海底深度的测定也是利用声音的传播原理。 答案补充 四、电学知识的应用 自法拉发现电磁感应现象以来,人类进入了电气化时代。从生活用电到交通运输、工厂企业用电,都来源于发电机,电已成为人类必不可少的主要能源。在我们的生活中,随处可见电的应用。如夜间走路用的手电,它是将化学能转化为电能;干电池不会发生触电事故,而照明用电如使用不当,将会危及我们的生命安全,这是因为不高于36V的是安全电压,而照明电路的电压是220V,远远高于安全电压;煮饭用电饭煲、电炒锅是将电能转化为内能,电力机车的行驶也是靠电能,一切家用电器都需要电。假设没有电,电动机将不能转动,电力机车不能行驶,电器都不能工作,人类社会将会倒退。因此,电是人类的好伙伴,只要我们严格遵循安全用电原则,我们就可以驯服它,利用它为人类服务。 总之,物理知识从生活实际到高科技前沿,它的应用十分广泛。作为一名物理教师,不仅要使学生理解学习物理知识的重要性,认识物理知识在当代社会中的重要作用,更要引导学生关注物理学的最新发展,使学生将所学物理知识与当前的社会实践和生活实际结合起来,坚持与时俱进,坚持科学发展观,利用物理知识推动社会和谐发展,更好地造福于人类。 答案补充 生活中的物理小常识 包括 跳高运动员为什么要助跑?为什么可以用吸管“喝”汽水?暖水瓶为什么能保温? 东西太多了,并列举了,非常有用。 写这篇文章时,多举几个例子,2000个字就能凑到了
闻到花香丶证明分子在做无规则运动丶冬天冰没熔化但是体积小了丶因为升华
生活中的物理现象作文600字
生活中的物理现象作文600字,作文的水平提高还要依靠个人的努力,作文绝不只是单一的流水账,写作不能局限于同一种题材,就像每逢春节都少不了孩童的笑闹和鞭炮,下面一起来学习生活中的物理现象作文600字。
生活中看似平常的现象中,其实隐藏了很多简单的物理知识。物理就在我们身边,只要你用心观察,细心体会,你将会发现,你已来到了五彩缤纷的物理世界,在这儿你将会发现人生的新起点。
比如,五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果你急于剥壳吃蛋,就难免连壳带“肉”一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。
这就是利用了物质热胀冷缩的特性。不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的.温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收缩,而这时蛋壳的收缩已经很缓慢了,这样就使蛋白与蛋壳脱离开来,因此,剥起来就不会连壳带“肉”一起下来了。
明白了这个道理,对我们很有用处。比如在设计房屋和桥梁时,都广泛采用钢筋混凝土,就是因为钢材和混凝土的膨胀程度几乎完全一样,受温度的影响不大,尽管春夏秋冬的温度不同,也不会产生有害的作用力,所以造成的房屋和桥梁十分坚固。
色彩斑斓的世界中,有着五彩缤纷的物理现象,只要仔细观察身边的事物,发现其规律,就能为我们所用。
日常现象、生活中的小游戏以及我们的玩具中都蕴含着物理知识,随着我们不断增长的物理学知识和探究实验的兴趣,用物理知识的储备来寻找所需要的信息源,挑战我们的学习兴趣,开创游戏的空间增长物理知识,让我们意识到实验不仅仅是走进实验室才能完成的探究,更是让生活中得到的实验探究兴趣。
许多生活现象都能引发我们遐想,一个不经意的想法,一个微小的变化,都会引导着我们去探索,去实验。当我们用老花眼镜(凸透镜)看近处或远处物体,我们会被意想不到的现象吸引;当新鲜的鸡蛋在水中下沉,却在不断加入盐的水中浮起,我们会为之惊讶;当我们用线和纸杯制成的土电话体会小时的乐趣;当我们可以用水杯和纸板托起水的激动。经过了大胆证实猜想就会有意想不到的收获与发现,原来物理是这样充满奥秘与神奇,充满着乐趣。
物理就在我们身边,生活中的很多现象都蕴含着物理道理,甚至一些小游戏和生活现象都有让我们觉得很惊奇,要来了解这个神奇的世界就用我们储备的物理知识来解决。物理这门学科,培养着我们的小组实验精神,提高我们的动手能力,使我们对生活充满好奇……
就拿我们人人熟悉的手机来说:当前手机的`应用已经非常普遍了,当我们在用它进行通讯、娱乐甚至上网时,还可以用它来做小实验解决我们的学习知识,例如拨打放在桌面上调至振动的手机[1],可以听到手机与桌面间因为振动而发出的声音,说明声音是由于物体的振动而产生的。进而我们会想,如果把教科书中可抽真空罩的实验中的小闹铃换成手机,当拨打置于铃声状态的手机时,以及不断抽空气的手机时,体会可以听到铃声以及感到声音在变小的过程,体会学习的声音不能在真空中传播。但是在拨打时,发现手机是有信号的,甚至是可以接通的,看来虽然声音不能在真空中传播,那手机信号直接传播的可能不是声音,其实手机的信号是一种电磁波,可以猜想出电磁波应该是可以在真空中进行传播的。这就启发我们,声音与电磁波的性质并不一样,宇航员就是借助无线电来传递信息,由此我们可以看出物理对于生活的重要性。
日常生活中的想象可以给我们很多启发,而我们从小玩起来的小玩具也可以让我们从物理知识中得到解决。
像如饮水鸟,将饮水鸟的头按低,使其嘴接触到水,让后释放,之后会发现它不断地抬头又不断低头完成饮水动作,也许之前我们会觉得这很好玩,现在我们会想到那饮水鸟是不是会永远饮水下去?首先我们给予鸟一定的能量,可以猜想这种能量不是平白生成的。可会不会永远存在下去,所以我们听到的永动机是不可能存在的,但这个玩具却称为“爱因斯坦也吃惊的玩具”,也想彻底明白这个问题,我们还有很多的探究去完成。也许现在我们的猜想或许不完善甚至是不正确的,而在生活中有很多现象我们可以利用物理知识解决问题,随着我们物理知识的不断掌握,更能体会到物理的神奇。
物理是一门很神奇的学科,它可以引导我们走入一个神奇的世界中,我们需要不断观察、提出质疑和探究实验,我们的能量是无穷的,我们可以用永动机的精神去追求科学真理。
物理激发我们的兴趣,培养我们的求知精神,我们能够在玩耍中获得知识,在生活中懂得物理道理,我们要对生活现象怀有疑问,用自己的物理知识来解决,去发现,这样我们会发现,只有这样做了,才会是成功者的作为,探究物理让我们从走进实验开始,兴趣从探究中获得!