首页 > 论文发表知识库 > 淀粉酶酶学性质研究实验论文题目

淀粉酶酶学性质研究实验论文题目

发布时间:

淀粉酶酶学性质研究实验论文题目

实验七、酶的特性(唾液淀粉酶性质的研究)[目的要求]1、进一步学习和了解酶的性质。2、学会检查酶的性质的原理和方法。[实验原理]酶与一般催化剂最主要的区别之一是酶具有高度特异(专一)性,即一种酶只能对一种底物或一类底物(此类底物在结构上通常具有相同的化学键)起催化作用,对其他底物无催化反应。例如,淀粉酶和蔗糖酶虽然都是催化糖苷键的水解,但是淀粉酶只对淀粉起作用,蔗糖酶只水解蔗糖。还原糖产物可用本乃狄试剂鉴定。    通过比较淀粉酶在不同pH、不同温度以及有无抑制剂或激活剂时水解淀粉的差异,说明这些环境因素与酶活性的关系。温度、PH对淀粉活性影响酶的催化活性受到温度的影响,在一定温度范围内,酶才有活性,且在最适温度下,酶反应速度最大。大多数动物酶的最适温度为37℃-40℃,植物酶的最适温度为50℃-60℃。对温度的稳定性与其存在形式有关,有些的干燥制剂,虽加热到100℃,其活性并无明显变,但在100℃的溶液中很快地完成失去活性。低温能降低或抑制的活性,但不能使失活。酶的激活和抑制作用酶是具有高效专一催化活性的蛋白质,其活性常受温度PH及些物质的影响。 某些物质可以增加其活性,称为激活剂;某些物质能降低其活性,称为抑制剂。很少量的激活剂或抑制剂就会影响酶的活性,而且这种作用常常具有特异性。但要注意的是激活剂和抑制不是绝对的,有些物质在低浓度时为某种酶的激活剂时却为另一种酶的抑制剂,而在高浓度时则为该酶的激活剂(如NaCl)。[实验材料与设备]器材:试管和试管架、试管夹、恒温水浴箱、烧杯、冰浴(冰箱)、沸水浴(电磁炉)、移液管。试剂:淀粉 NaCl液、淀粉、1%淀粉 NaCl液、1%CuSO4、1%NaCl、1%Na2SO4、2%蔗糖溶液,碘化钾-碘溶液,斑氏试剂。[实验步骤]一、酶液的提取。(1)唾液淀粉酶的制备。二、酶的活性检验(1) 温度对酶活性的影响。探索唾液淀粉酶对淀粉和蔗糖的作用材料:百分之二的新鲜唾液淀粉酶溶液试管,大烧杯,量筒,滴管,温度计,试管架,三脚架,石棉网,酒精灯,百分之三的淀粉溶液,百分之三的蔗糖溶液,菲林试剂,热水。方法步骤:1取两只洁净试管,编号,然后在一号试管注入淀粉溶液2ML,试管二注入蔗糖溶液2ML。然后在一号试管和二号试管都加入2ML淀粉酶溶液。2轻轻震荡试管,使混合均匀,再将试管下部锓在60C热水中5分钟。3取出试管,加入2ML菲林试剂,再轻轻震荡。4将试管都放在装有热水的大烧杯,煮沸1分钟。5记录实验结果。

这两样应该够复习了吧

尿淀粉酶仅供参考 跟饮水多少都有关系 血淀粉酶才能诊断

实验七、酶的特性(唾液淀粉酶性质的研究)[目的要求]1、进一步学习和了解酶的性质。2、学会检查酶的性质的原理和方法。[实验原理]酶与一般催化剂最主要的区别之一是酶具有高度特异(专一)性,即一种酶只能对一种底物或一类底物(此类底物在结构上通常具有相同的化学键)起催化作用,对其他底物无催化反应。例如,淀粉酶和蔗糖酶虽然都是催化糖苷键的水解,但是淀粉酶只对淀粉起作用,蔗糖酶只水解蔗糖。还原糖产物可用本乃狄试剂鉴定。 通过比较淀粉酶在不同pH、不同温度以及有无抑制剂或激活剂时水解淀粉的差异,说明这些环境因素与酶活性的关系。温度、PH对淀粉活性影响酶的催化活性受到温度的影响,在一定温度范围内,酶才有活性,且在最适温度下,酶反应速度最大。大多数动物酶的最适温度为37℃-40℃,植物酶的最适温度为50℃-60℃。对温度的稳定性与其存在形式有关,有些的干燥制剂,虽加热到100℃,其活性并无明显变,但在100℃的溶液中很快地完成失去活性。低温能降低或抑制的活性,但不能使失活。酶的激活和抑制作用酶是具有高效专一催化活性的蛋白质,其活性常受温度PH及些物质的影响。 某些物质可以增加其活性,称为激活剂;某些物质能降低其活性,称为抑制剂。很少量的激活剂或抑制剂就会影响酶的活性,而且这种作用常常具有特异性。但要注意的是激活剂和抑制不是绝对的,有些物质在低浓度时为某种酶的激活剂时却为另一种酶的抑制剂,而在高浓度时则为该酶的激活剂(如NaCl)。[实验材料与设备]器材:试管和试管架、试管夹、恒温水浴箱、烧杯、冰浴(冰箱)、沸水浴(电磁炉)、移液管。试剂:淀粉 NaCl液、淀粉、1%淀粉 NaCl液、1%CuSO4、1%NaCl、1%Na2SO4、2%蔗糖溶液,碘化钾-碘溶液,斑氏试剂。[实验步骤]一、酶液的提取。(1)唾液淀粉酶的制备。二、酶的活性检验(1) 温度对酶活性的影响。管 号 1 2 淀粉—NaCl液(ml ) 稀淀粉酶 煮沸淀粉酶 温度处理(10分钟) 37℃ 冰浴 37℃温度处理(10分钟)加KI—I2 2—3d 2—3d 2—3d结果—反应速度摇匀,保持各自温度继续反应,5分钟后每隔1分钟从第2号管吸取1滴反应液于白瓷板上,用碘液检查反应进行情况,直至反应液不再变色(只有碘液的颜色),立即取出所有试管,流水冷却2min,各加1滴碘液,混匀。观察并记录各管反应现象,解释之。注:*2号管冰浴10分钟后分成二半、一半加碘试剂一半37℃保温10min后加碘试剂。(2) 激活剂和抑制剂。管 号 1 2 3 淀粉(ml) 2 2 2 21%CuSO4(ml) 11%NaCl(ml) 11%Na2SO4(ml) 1蒸馏水 1稀淀粉酶(ml) 1 1 1 1保温(37℃)10分钟后KI—I2 2—3d现 象试说明本实验第3号管的意义,并推出Cl-和Cu2+各是唾液酶的激活剂还是抑制剂?举例说明抑制与变性剂有何异同?三、的专一性管 号 1 2 3 4淀粉液(ml) 2 2 2蔗糖液(ml) 2酶液(ml) 1 1煮沸的酶液(ml) 1蒸馏水 1保温(37℃)15分钟后Benedict试剂(ml) 1 1 1 1沸水浴2-3min现 象四、结果处理讨论题:为何温度的控制是实验成败的关键?五、注意事项:1) 激活剂抑制剂实验中淀粉酶要最后加(为什么?)2) 加入淀粉时要小心,不要沾到试管壁;另外,摇匀时也不宜用力过猛,使淀粉溶液或淀粉粒过多地沾在试管壁上,这样会影响结果的观察,误差较大。3) 反应结果如不明显调节保温时间和酶液浓度。4) 温度结果要先准备好煮沸的酶液和冰浴再加入试剂。冰浴处理10分钟后的那支试管内的溶液要取约一半放在室温继续反应。琼州学院实验项目卡生命科学 系 生化 实验室 开设日期___年___月___日实验项目 href="#淀粉酶性质的研究" 酶的特性 面向专业 课程性质 1、必修2、选修实验类型 1、还未开设的新实验2、手段更新的实验3、已开设过的实验 本实验学时数 3 实验分组概况所用主要仪器 名 称 型号规格 数量 名 称 型号规格 数量恒温水浴箱 1电磁炉 1试管及试管架 若干移液管 2ml 若干冰箱 1大烧杯 (装冰块) 1所用主要药品 名 称 纯度级别 数量 名 称 纯度级别 数量淀粉 (溶于氯化钠) 20ml*N Benedict试剂 无水硫酸铜 20ml* 30ml*N 柠檬酸钠1%(溶于氯化钠) 20ml*N 无水碳酸钠氯化钠 1% 40ml*N 碘化钾 碘硫酸钠 1% 10ml*N硫酸铜 1% 10ml*N蔗糖 2% 300ml其他 新鲜唾液、大量冰块求录用!!

淀粉酶活性的测定结果与分析实验:

一、研究背景及目的:

酶是高效催化有机体新陈代谢各步反应的活性蛋白,几乎所有的生化反应都离不开酶的催化,所以酶在生物体内扮演着极其重要的角色,因此对酶的研究有着非常重要的意义。

酶的活力是酶的重要参数,反映的是酶的催化能力,因此测定酶活力是研究酶的基础。酶活力由酶活力单位表征,通过计算适宜条件下一定时间内一定量的酶催化生成产物的量得到。

本实验选取萌发的禾谷类种子为材料,通过对其所含两种淀粉酶活力的测定来研究酶活力测定的方法。

二、实验原理

萌发的种子中存在两种淀粉酶,分别是 a 淀粉酶和 B 淀粉酶,B淀粉酶不耐热,在高温下易钝化,而 a 淀粉不耐酸,在 下则发生钝化。本实验的设计利用 B 淀粉酶不耐热的特性,在高温下(70C°)下处理使得 B 淀粉酶钝化而测定 a 淀粉酶的酶活性。

酶活性的测定是通过测定一定量的酶在一定时间内催化得到的麦芽糖的量来实现的,麦芽糖的浓度利用比色法可以很容易测得。然后利用同样的原理测得两种淀粉酶的总活性,拟将总活性与  淀粉酶的活性的差值看作B 淀粉酶的活性,再做进一步分析。

实验中为了消除非酶促反应引起的麦芽糖的生成带来的误差,每组实验都做了相应的对照实验,在最终计算酶的活性时以测量组的值减去对照组的值加以校正。

小麦中淀粉酶酶学性质研究论文

β-淀粉酶;β-amylase 性质:能将直链淀粉分解成麦芽糖的淀粉酶。广布于植物界如未发芽的大麦、小麦、燕麦、大豆、甘薯等中。可耐酸。将麦芽汁调节pH值为,在0℃下可使α-淀粉酶失去活力,而余下β-淀粉酶。β-淀粉酶的唯一产物是麦芽糖,不是葡萄糖。β-淀粉酶水解淀粉产生麦芽糖。长期以来,β-淀粉酶主要来源于大麦等粮食作物,应用受到限制微生物产的β-淀粉酶可全部或部分代替植物来源的β-淀粉酶,用来生产高麦芽糖浆、高纯度麦芽糖,医用针剂麦芽糖,麦芽糖醇,麦芽糊精,啤酒等。此项技术共包括以下三项成果。 1、高产β-淀粉酶菌种及食品级β-淀粉酶制剂生产新工艺菌种为腊状芽孢杆菌,经物理、化学方法处理,得诱变株M-153,产β-淀粉酶活力提高了近300倍,产酶活力(45℃测定)高达2万单位/毫升左右。 2、用微生物β-淀粉酶生产高麦芽糖浆新工艺含麦芽糖55%-60%的试产品曾用于生产糖果、果脯、饼干、面包等代替饴糖和蔗糖,应用效果良好,提高了各类食品的质量,改善了风味。 3、用微生物β-淀粉酶代替部分大麦芽生产啤酒新工艺 生产啤酒常规原料配比为70%大麦芽,30%大米为辅料。新工艺将大麦芽与大米的比例由7:3改为5:5,补加微生物β-淀粉酶,在北京啤酒厂的20-100吨发酵罐的生产线上试生产成功。

萌发的种子a淀粉酶活性高,产生更多的葡萄糖为萌发提供能量,干种子b淀粉酶活性高,有利于防止细菌感染

萌发的种子a淀粉酶活性高,产生更多的葡萄糖为萌发提供能量,干种子b淀粉酶活性高,有利于防止细菌感染。

淀粉酶活性随萌发时间的延长而增高,这种变化有助于小麦种子的萌发。

淀粉酶是水解淀粉(1→4)糖苷键的一类酶的总称。实验证明,在某些植物如小麦和大麦的休眠种子中只含有β-淀粉酶,α-淀粉酶是在发芽过程中形成的,所以在禾谷类萌发的种子和幼苗中,这两类淀粉酶都存在。

扩展资料:

淀粉酶是水解淀粉和糖原的酶类总称,通常通过淀粉酶催化水解织物上的淀粉浆料,由于淀粉酶的高效性及专一性,酶退浆的退浆率高,退浆快,污染少,产品比酸法、碱法更柔软,且不损伤纤维。淀粉酶的种类很多,根据织物不同,设备组合不同,工艺流程也不同,目前所用的退浆方法有浸渍法、堆置法、卷染法、连续洗等,由于淀粉酶退浆机械作用小,水的用量少,可以在低温条件下达到退浆效果,具有鲜明的环保特色。

参考资料来源:百度百科-淀粉酶

α-淀粉酶以Ca2+为必需因子并作为稳定因子和激活因子,也有部分淀粉酶为非Ca2+依赖型。淀粉酶既作用于直链淀粉,亦作用于支链淀粉,无差别地随机切断糖链内部的α-1,4-葡聚糖链。β-淀粉酶从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链。

淀粉酶的研究进展论文题目

淀粉生产中浸泡大米蛋白酶法改性及酶解物功能特性研究 剂亚硫酸的替代工艺

哥几个几个号

淀粉酶活性的测定结果与分析实验:

一、研究背景及目的:

酶是高效催化有机体新陈代谢各步反应的活性蛋白,几乎所有的生化反应都离不开酶的催化,所以酶在生物体内扮演着极其重要的角色,因此对酶的研究有着非常重要的意义。

酶的活力是酶的重要参数,反映的是酶的催化能力,因此测定酶活力是研究酶的基础。酶活力由酶活力单位表征,通过计算适宜条件下一定时间内一定量的酶催化生成产物的量得到。

本实验选取萌发的禾谷类种子为材料,通过对其所含两种淀粉酶活力的测定来研究酶活力测定的方法。

二、实验原理

萌发的种子中存在两种淀粉酶,分别是 a 淀粉酶和 B 淀粉酶,B淀粉酶不耐热,在高温下易钝化,而 a 淀粉不耐酸,在 下则发生钝化。本实验的设计利用 B 淀粉酶不耐热的特性,在高温下(70C°)下处理使得 B 淀粉酶钝化而测定 a 淀粉酶的酶活性。

酶活性的测定是通过测定一定量的酶在一定时间内催化得到的麦芽糖的量来实现的,麦芽糖的浓度利用比色法可以很容易测得。然后利用同样的原理测得两种淀粉酶的总活性,拟将总活性与  淀粉酶的活性的差值看作B 淀粉酶的活性,再做进一步分析。

实验中为了消除非酶促反应引起的麦芽糖的生成带来的误差,每组实验都做了相应的对照实验,在最终计算酶的活性时以测量组的值减去对照组的值加以校正。

淀粉酶毕业论文

药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( , Oligo-l,6-glucosidase ),普鲁兰酶( ),异淀粉酶( , Isoamylose ),支链淀粉一6-葡聚糖酶( ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 蜡状芽抱杆菌覃状变种(Bacillus cereus ) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 嗜酸性分解普鲁兰多糖芽抱杆菌() 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸()。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于以上不长,在以普鲁兰糖为碳源的培养基(( ~)上生长良好。 枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为~,但在时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在~有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. Bacillusnaganoensis,Bacillus deramificans, 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, , Thermotoga maritime的最适温度和pH分别是90℃, , Thermurs caldopHilus的最适温度和pH分别是75℃,, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~,α~,α~,α~,α~,α~糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量(对碎米计),β~淀粉酶活性2,000单位/克以上,;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加,麦芽糖含量平均增加了,糊精含量平均减少了高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~和α~糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达,最佳发酵条件下产量可达 .酶的最适作用温度为600C,最适pH值,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全

进入21世纪,绿色环保纺织品成为纺织品种的新视点,在运用千变万化的织物组织和日新月异的织造、印染新技术的同时,开发符合环保标准的新产品是一个重要途径。绿色环保大豆蛋白纤维的研制成功是人造纤维家族的最新突破,符合我国纤维发展的方向。大豆蛋白纤维是利用榨油后的豆粕通过添加功能性助剂,经湿法纺丝而成的再生蛋白质纤维,该纤维不仅具有单丝纤度细、比重轻、强伸度高、耐酸耐碱性好、光泽好、吸湿导湿性好等特点,还具有羊绒般柔软手感、蚕丝般柔和光泽、棉纤维的吸湿性、羊毛的保暖性等优良服用性能,也是迄今为止唯一由我国科技人员自主开发并在国际上率先取得工业化试验成功的纤维材料。 大豆蛋白纤维作为一种纺织原料,只有经过技术开发和产品开发,才能充分展示出它的独特魅力。大豆蛋白纤维由于其自身难以去除的米黄色,现在的前处理工艺在尽量减少蛋白质损伤的情况下还不能获得必要的白度,造成了对很多色号的限制和色泽鲜艳度的影响,同时匀染性也是该纤维染色中的一大难题,这都需要在工艺制定方面进行更深入的研究。只有在尽可能的减少蛋白质损失,制定合理的染整加工工艺,才能显示出大豆蛋白纤维的优良风格。但是己有的资料表明,目前还没有简单易行的在染整加工工艺中蛋白质含量的测定方法。本论文的工作重心就在于运用凯氏定氮法来检测在大豆蛋白纤维染整加工工艺中蛋白质的变化情况,综合考虑纤维经过染整加工工艺处理后的效果和损伤情况,最终制定出大豆蛋白纤维的低损伤染整加工工艺,为以后对大豆蛋白纤维的进一步研究提供有价值的参考。 大豆蛋白纤维含氮量的工艺条件因素中,主要考虑的是pH、温度、处理时间以及碱剂浓度。从实验结果和讨论可知,温度和碱剂浓度是影响含氮量水平的两个最主要因素,在制定大豆蛋白纤维染整工艺时,应重点考虑。其中pH值接近7时纤维的含氮量最高,并且随着pH偏离中性程度的增大而迅速减少;处理温度低于70℃时,纤维的含氮量较高,随着温度继续升高,纤维的含氮量不断减少,并且较高的处理温度也会影响大豆蛋白纤维的手感;处理时间在60分钟内,纤维含氮量能保持较高的水平;纤维的含氮量随着纯碱浓度的增加而减少,当纯碱大于30留L时,N%低于。 大豆蛋白纤维采用淀粉酶退浆、双氧水漂白的前处理工艺效果较好。因为淀粉酶可以水解经纱上的淀粉浆,而在碱性条件和较高温度下氧漂时,不但能除去纤维上的色素,而且能除去剩余的淀粉和PVA浆料,使前处理后织物具有较好的白度和柔软的手感。经过淀粉酶退浆、双氧水氧化漂白的正交试验得出大豆蛋白纤维前处理低损伤工艺为:退浆工艺:淀粉酶2岁L,pH值,处理温度30℃,处理时间40min;漂白处理工艺:双氧水8留L,pH值7,处理温度60℃,处理时间30min。 大豆蛋白纤维属于再生蛋白质纤维,可用酸性、活性染料进行染色。论文中 采用ArgazolTw系列的活性染料对大豆蛋白纤维进行染色处理后发现pH值对大豆蛋白纤维的染色有一定的影响。该类染料在近中性的条件下染色后,大豆蛋白纤维有较高的表观深度。考虑到大豆蛋白质纤维在近中性条件下水解程度最小,并使染色后可获得较高的固着效率,建议采用在近中性条件下固色的活性染料,可以保证纤维在色泽鲜艳的同时,还有较好的光泽和手感。而毛用的Lanasol染料对纤维的表观深度较低,可采用固色剂进行处理从而获得较好的牢度;含有双活性基团的活性染料对纤维的匀染性较好,色牢度较差,适宜染中浅色。弱酸性染料Teton和Erionyl染料对纤维之间有较大的范德华力和氢键力,染料上染后结合较牢固,可以用来染大豆蛋白纤维的深浓色,并且色泽鲜艳,匀染性较好。而强酸性染料Ncolan的提升性能较低,染料与纤维分子间的库伦力较小,染料的上染率较低。增加酸的用量,该染料的上染率会有所提高,但在酸性条件下染色会造成大豆蛋白纤维的蛋白质水解,所以不适宜用来染大豆蛋白纤维。 为获得更好的染色效果,实验中采用了两种阳离子型的固色剂DinfixRF和DinfixF一100对染后的织物进行固色处理,并通过测定皂洗牢度和摩擦牢度来检验其效果。实验结果表明,经过固色处理后的大豆蛋白纤维有较高的水洗牢度和一定的摩擦牢度。

建议你去知网这类数据库下载,不会搜的话可以参照我baidu空间里步骤去搜,那里论文相当多

测定淀粉酶活性的相关研究论文

(1)在比色试管中,加入1ml标准糊精溶液和3ml标准稀碘液,混匀,作为比较颜色的标准管。(2)在25mm×250mm试管中,加入2%可溶性淀粉溶液20ml,磷酸氢二钠-柠檬酸缓冲液5ml,在60℃水浴中平衡约5min,然后加入预先用缓冲液稀释好的酶液,立即计时并充分混匀。定时取出1ml反应液加入预先盛有3ml比色稀碘液的试管中,然后每隔1min重复此操作,当试管中的颜色与标准管颜色相同时,即达到终点(比色时两试管面向直射光线,凭肉眼观察),记录反应总时间。此反应应在3min之内达到终点,如反应时间不在此范围内,应重新调节样品或酶的稀释度在做。(3)计算α–淀粉酶活力以1ml酶液于60℃、的条件下,在1h液化可溶性淀粉的克数为1个酶活力单位。酶活力单位(g/ml)=(60/T×20×2%×N)÷式中,60—酶活定义中反应时间为60min;T—反应时间(min);20—可溶性淀粉的毫升数;2%—可溶性淀粉浓度;N—酶液稀释倍数;—测定时所用酶液量(ml)。

淀粉酶是水解淀粉和糖原的酶类总称,通常通过淀粉酶催化水解织物上的淀粉浆料,由于淀粉酶的高效性及专一性,酶退浆的退浆率高,退浆快,污染少,产品比酸法、碱法更柔软,且不损伤纤维。淀粉酶的种类很多,根据织物不同,设备组合不同,工艺流程也不同,目前所用的退浆方法有浸渍法、堆置法、卷染法、连续洗等,由于淀粉酶退浆机械作用小,水的用量少,可以在低温条件下达到退浆效果,具有鲜明的环保特色。

α-淀粉酶是催化淀粉水解的酶α-淀粉酶制剂主要成分是淀粉酶,混合一些辅料制成的便于运输、保存和使用的商品化制品α-淀粉酶抑制剂是抑制α-淀粉酶活性的物质

  • 索引序列
  • 淀粉酶酶学性质研究实验论文题目
  • 小麦中淀粉酶酶学性质研究论文
  • 淀粉酶的研究进展论文题目
  • 淀粉酶毕业论文
  • 测定淀粉酶活性的相关研究论文
  • 返回顶部