• 回答数

    4

  • 浏览数

    240

1144177586丫头
首页 > 期刊论文 > 正定矩阵的性质研究论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

背信弃翊

已采纳

矩阵正定性的性质:

1、正定矩阵的特征值都是正数。

2、正定矩阵的主元也都是正数。

3、正定矩阵的所有子行列式都是正数。

4、正定矩阵将方阵特征值,主元,行列式融为一体。

相关信息:

对于n阶实对称矩阵A,下列条件是等价的:A是正定矩阵;A的一切顺序主子式均为正;A的一切主子式均为正;A的特征值均为正。

对于具体的实对称矩阵,常用矩阵的各阶顺序主子式是否大于零来判断其正定性;对于抽象的矩阵,由给定矩阵的正定性,利用标准型,特征值及充分必要条件来证相关矩阵的正定性。

282 评论

laijiaying4

对于对称矩阵A,若对任意非零向量x,都有x*AX>0成立,则称A为正定。如果A是正定矩阵,那么a[i][i]一定大于0。因为,a[i][i]=ei*Aei>0.其中,ei为第i个单位向量。

148 评论

飞天小杨杨

雅可比行列式有哪些性质

129 评论

滋味游龙

相信正定矩阵的定义楼主很清楚。定义矩阵的正定性是根据二次型来的,这也就是说明正定矩阵的性质反映了一个二次表达式的性质,从另一个角度讲这也给我们提供了一个二次表达式的矩阵表示方法。在最初学函数的时候,我们学过配方法,其实化一个二次型为标准二次型的时候也是利用这个原理,只不过我们通过矩阵的手段来进行计算同时还用到了满值线性变换的一些知识。其实在数学理论中更愿意研究Hermite二次型的正定问题,因为Hermite矩阵(A=AH(表示共轭转置矩阵))更能和一些工程学科相结合。另外在数值计算科学中也经常会用到正定矩阵的知识。比如线性方程组的高斯-塞德尔迭代法就是在方程组的系数矩阵是正定的情况下对任意初始向量是收敛的。从工程学科来说,举一个控制系统为例,如果可以找到一个利亚普诺夫函数使得它的倒数是负定(也就是说倒数的相反数是正定的)那么这个系统就是渐进稳定的。

291 评论

相关问答

  • 矩阵的运算及实例研究论文

    矩阵在许多领域都应用广泛。有些时候用到矩阵是因为其表达方式紧凑,例如在博弈论和经济学中,会用收益矩阵来表示两个博弈对象在各种决策方式下的收益。文本挖掘和索引典汇

    腾瑞水暖卫浴 5人参与回答 2023-12-11
  • 关于正交矩阵的论文题目

    还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!

    hylandstar 2人参与回答 2023-12-06
  • 正交矩阵毕业论文

    在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提

    迷路的小花猫。 3人参与回答 2023-12-08
  • 逆矩阵和广义逆矩阵毕业论文

    所以算出A的广义逆A+,然后验证上述条件即可。

    蹦蹬的小兔子 3人参与回答 2023-12-11
  • 矩阵秩的性质研究小论文

    矩阵秩的性质矩阵满秩有什么性质行满秩矩阵就是行向量线性无关,列满秩矩阵就是列向量线性无关,一个矩阵的行秩等于列秩,所以如果是方阵,行满秩矩阵与列满秩矩阵是等价的

    末日女友CCCccC 4人参与回答 2023-12-08