康康是逗逼
谈勾股定理的应用 勾股定理是数学中的一条重要定理,在解决直角三角形问题中,可以说它无处不在.但是,在实际解题过程中,常常受思维限制,造成错解,以下三例供大家参考,以免误入歧途. 例1、如图1,点 分别把正方形ABCD四边AB、CD、BC、DA分成m:n两段.若AB=1,则四边形 的面积是( ) A、m2+n2 B、 2 C、 2 D、 错解:选(A). 剖析:本题出错的原因是把"一点将线段分成m:n两段"错误理解成"一点把一条线段分成长为m、n两段"了,于是就得出了四边形ABCD的面积是m2+n2这样一个错误的结果. 正解:选(D) 这是因为,由题意知AB=1,且AA/:BB/=m:n,则AA/= A/B= ,故A/B/ 2= + = 例2、在梯形ABCD中,AD//BC,AC= ,BD= ,中位线MN= ,求梯形ABCD的面积. 错解:过点D作AC的平行线交BC的延长线于E.(如图2) ∵AD//CE,DE//AC ∴四边形ACED是平行四边形 ∴DE=AC= ,CE=AD ∴BE=BC+CE=BC+AD=2MN= ∵△BDE的三边长分别为 , , , ∴△BDE是一个直角三角形. 又∵△ADB中AD边上的高与△DCE中CE边上的高相等. ∴S△ABD=S△DCE ∴S梯形ABCD=S△BDE= BD DE= . 剖析:在上述解答中,有△BDE的三边长分别是 , , 推得△BDE是直角三角形是错误的,因为 + ≠ 这种错误的形成主要是因为有了"三边是3、4、5的三角形是直角三角形"的印象,以致得出了错误的结果. 正解: 过点D作AC的平行线交BC的延长线于E.(如图2) ∵AD//CE,DE//AC ∴四边形ACED是平行四边形 ∴DE=AC= ,CE=AD ∴BE=BC+CE=BC+AD=2MN= 作DF⊥BE垂足为F,则DF2=DB2-BF2=DE2-EF2, 即 - = -EF2 ∴EF= ,于是DF= . 又∵△ADB中AD边上的高与△DCE中CE边上的高相等. ∴S△ABD=S△DCE ∴S梯形ABCD=S△BDE= BE DF= . 例3、设直角三角形三条边之比为1:2k : 3k2,求k的值. 错解:设直角三角形三边长分别为x,2kx,3k2x,则由勾股定理,得: X2+4k2x2=9k4x2,即9k4-4k2-1=0 解得:k2= 或k2= ∴ k= 或k= <0(舍去) ∴k= 即为所求. 剖析:错解仅认为3k2x为斜边,忽略了2kx , x 也可能是斜边的情况. 正解:设直角三角形三边长分别为x,2kx,3k2x,则: (1) 当3k2x为斜边时,同错解. (2) 当2kx为斜边时,有X2+9k4x2=4k2x2,即9k4-4k2+1=0,此方程无解. (3) 当x为斜边时,有 x2=9k4x2+4k2x2,即9k4+4k2-1=0, 解得:k2= 或k2= <0(舍去) ∴ k= 或k= <0(舍去) ∴综上所述,k的值应为 或 . 总之,解题时,需要仔细观察题目的特点,深入挖掘其内涵条件,构造出符合条件的直角三角形,力求得到简便、巧妙的解答. 好了 就那么多
璐璐308738
【容易忽略的答案】大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
happysky4496
一个算式:(3+4) =?这道题看似很简单,但是如果换成是字母,如:(A+B) =?那你还会做吗?(A+B) =(A+B)×(A+B)把后面的(A+B)看成一个整体,利用乘法分配律,得=A×(A+B)+ B×(A+B)再利用乘法分配律,得A +AB+BA+B合并同类项,得A +2AB +B所以(A+B) = A +2AB +B最后验算一次。那如果算式是(A-B) =?是否也能用刚才的方法算出来呢?(A-B) =(A-B) ×(A-B)= A×(A-B) -B×(A-B)=A -AB-BA+B= A -2AB+B最后验算一次。看来平方里也有这么多得奥秘,值得我们细细观察!
硕士研究生的毕业论文字数一般3-5万字之间,而各部分也有一定的字数要求。而关于硕士研究生的毕业论文各部分字数要求如下:一、硕士论文题目中、英文题目:论文题目应能
留存收益是公司在经营过程中所创造的,但由于公司经营发展的需要或由于法定的原因等,没有分配给所有者而留存在公司的盈利。它包含盈余公积和未分配利润,其中盈余公积是有
告别那些烦恼消费不到半年,对支付宝等方面,不多个地方工资标准的孩子的哈噶哈人噶任何公司如何
谈勾股定理的应用 勾股定理是数学中的一条重要定理,在解决直角三角形问题中,可以说它无处不在.但是,在实际解题过程中,常常受思维限制,造成错解,以下三例供大
意义1、公平是提高经济效率的保证。2、是社会主义分配原则的体现,有利于协调人们之间的利益关系,实现社会的和谐,促进共同富裕。3、有利于提高消费水平和生活水平,有