三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 由于三角函数的周期性,它并不具有单值函数意义上的反函数。 三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。 基本初等内容:正弦 余弦 正切 余切 正割 余割
1、单纯的就值域的求解方法来说,没必要研究太多。2、研究函数的值域可以明确函数取值的范围大小,明确函数的最大最小值的情况。3、至于对考试而言,是获取分数的一个帮助。4、其实学习任何东西都是对自己面对问题、分析问题和解决问题的一种历练!
目的:整合函数极值的有关求解问题,有助于函数极值的更进一步研究。现实意义:为初学函数极值问题提供有关的资料,也为考研及掌握函数极值提供较全面的知识准备。
追求效率最大,质量最好……结合具体谈,很广泛的
It is well known, asks the function the most value is one of middle school mathematics important contents. Asks the law about the function most value, is in the high school mathematics teaching difficulty and key, is one which of contents all previous years college entrance examination inspects. But asks the function most value the method is also many and varied, presents “the application to be widespread mostly, the solution is flexible” the characteristic, it involves the aspect of knowledge is broad, problem solving skillful, method also because of topic, but different. But asks the function in the present high school teaching material the most value arrangement related content not to make specially said that actually in the high school mathematics teaching, the exercises, and even the high school graduation meets in the examination question and the high examination question, everywhere may meet asks the function most value the question. Therefore, we have the necessity to ask the function most value the method to make the full induction and the understanding. This article on the high school mathematics's request, has done the related research to the function most value question, summarized induces the solution function most value general method, discussed when the solution function most value should pay attention the question, elaborated through the above question, raises student's mathematics application consciousness, sharpened student's mathematics modelling ability and problem solving ability as well as innovative idea ability.
最值问题是高中数学中永恒的话题,可综合地考查函数的性质、导数、均值不等式、线性规划、向量等知识的应用;涉及到代数、三角、几何等方面的内容;体现数学中的数形结合、分类讨论、转化与化归、函数与方程等思想与方法,并能综合考查学生的数学思维能力、分析和解决问题的能力,是历届高考中的焦点、热点、难点.本文就近几年高考中的常见类型略作探讨,难免有不当之处,权作抛砖引玉. 中国论文网 /9/一、代数问题一般通过考察常见函数的单调性,或者能够利用导数问题研究其单调性,在定义域内求最值,或者通过方程思想,得到不等式再求最值.【例1】(2008·江西·第9题)若0
学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!
↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓
★ 数学应用数学毕业论文 ★
★ 大学生数学毕业论文 ★
★ 大学毕业论文评语大全 ★
★ 毕业论文答辩致谢词10篇 ★
中学数学论文题目
1、用面积思想 方法 解题
2、向量空间与矩阵
3、向量空间与等价关系
4、代数中美学思想新探
5、谈在数学中数学情景的创设
6、数学 创新思维 及其培养
7、用函数奇偶性解题
8、用方程思想方法解题
9、用数形结合思想方法解题
10、浅谈数学教学中的幽默风趣
11、中学数学教学与女中学生发展
12、论代数中同构思想在解题中的应用
13、论教师的人格魅力
14、论农村中小学数学 教育
15、论师范院校数学教育
16、数学在母校的发展
17、数学学习兴趣的激发和培养
18、谈新课程理念下的数学教师角色的转变
19、数学新课程教材教学探索
20、利用函数单调性解题
21、数学毕业论文题目汇总
22、浅谈中学数学教学中学生能力的培养
23、变异思维与学生的创新精神
24、试论数学中的美学
25、数学课堂中的提问艺术
26、不等式的证明方法
27、数列问题研究
28、复数方程的解法
29、函数最值方法研究
30、图象法在中学数学中的应用
31、近年来高考命题研究
32、边数最少的自然图的构造
33、向量线性相关性讨论
34、组合数学在中学数学中的应用
35、函数最值研究
36、中学数学符号浅谈
37、论数学交流能力培养(数学语言、图形、 符号等)
38、探影响解决数学问题的心理因素
39、数学后进学生的心理分析
40、生活中处处有数学
41、数学毕业论文题目汇总
42、生活中的数学
43、欧几里得第五公设产生背景及对数学发展影响
44、略谈我国古代的数学成就
45、论数学史的教育价值
46、课程改革与数学教师
47、数学差生非智力因素的分析及对策
48、高考应用问题研究
49、“数形结合”思想在竞赛中的应用
50、浅谈数学的 文化 价值
51、浅谈数学中的对称美
52、三阶幻方性质的探究
53、试谈数学竞赛中的对称性
54、学竞赛中的信息型问题探究
55、柯西不等式分析
56、中国剩余定理应用
57、不定方程的研究
58、一些数学思维方法的证明
59、分类讨论思想在中学数学中的应用
60、生活数学文化分析
数学研究生论文题目推荐
1、混杂随机时滞微分方程的稳定性与可控性
2、多目标单元构建技术在圆锯片生产企业的应用研究
3、基于区间直觉模糊集的多属性群决策研究
4、排队论在交通控制系统中的应用研究
5、若干类新形式的预条件迭代法的收敛性研究
6、高职微积分教学引入数学文化的实践研究
7、分数阶微分方程的Hyers-Ulam稳定性
8、三维面板数据模型的序列相关检验
9、半参数近似因子模型中的高维协方差矩阵估计
10、高职院校高等数学教学改革研究
11、若干模型的分位数变量选择
12、若干变点模型的 经验 似然推断
13、基于Navier-Stokes方程的图像处理与应用研究
14、基于ESMD方法的模态统计特征研究
15、基于复杂网络的影响力节点识别算法的研究
16、基于不确定信息一致性及相关问题研究
17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究
18、广义时变脉冲系统的时域控制
19、正六边形铺砌上H-三角形边界H-点数的研究
20、外来物种入侵的广义生物经济系统建模与控制
21、具有较少顶点个数的有限群元阶素图
22、基于支持向量机的混合时间序列模型的研究与应用
23、基于Copula函数的某些金融风险的研究
24、基于智能算法的时间序列预测方法研究
25、基于Copula函数的非寿险多元索赔准备金评估方法的研究
26、具有五个顶点的共轭类类长图
27、刚体系统的优化方法数值模拟
28、基于差分进化算法的多准则决策问题研究
29、广义切换系统的指数稳定与H_∞控制问题研究
30、基于神经网络的混沌时间序列研究与应用
31、具有较少顶点的共轭类长素图
32、两类共扰食饵-捕食者模型的动力学行为分析
33、复杂网络社团划分及城市公交网络研究
34、在线核极限学习机的改进与应用研究
35、共振微分方程边值问题正解存在性的研究
36、几类非线性离散系统的自适应控制算法设计
37、数据维数约简及分类算法研究
38、几类非线性不确定系统的自适应模糊控制研究
39、区间二型TSK模糊逻辑系统的混合学习算法的研究
40、基于节点调用关系的软件执行网络结构特征分析
41、基于复杂网络的软件网络关键节点挖掘算法研究
42、圈图谱半径问题研究
43、非线性状态约束系统的自适应控制方法研究
44、多维power-normal分布及其参数估计问题的研究
45、旋流式系统的混沌仿真及其控制与同步研究
46、具有可选服务的M/M/1排队系统驱动的流模型
47、动力系统的混沌反控制与同步研究
48、载流矩形薄板在磁场中的随机分岔
49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制
50、带有非线性功能响应函数的食饵-捕食系统的研究
51、基于观测器的饱和时滞广义系统的鲁棒控制
52、高职数学课程培养学生关键技能的研究
53、基于生存分析和似然理论的数控机床可靠性评估方法研究
54、面向不完全数据的疲劳可靠性分析方法研究
55、带平方根俘获率的可变生物种群模型的稳定性研究
56、一类非线性分数阶动力系统混沌同步控制研究
57、带有不耐烦顾客的M/M/m排队系统的顾客损失率
58、小波方法求解三类变分数阶微积分问题研究
59、乘积空间上拓扑度和不动点指数的计算及其应用
60、浓度对流扩散方程高精度并行格式的构造及其应用
专业微积分数学论文题目
1、一元微积分概念教学的设计研究
2、基于分数阶微积分的飞航式导弹控制系统设计方法研究
3、分数阶微积分运算数字滤波器设计与电路实现及其应用
4、分数阶微积分在现代信号分析与处理中应用的研究
5、广义分数阶微积分中若干问题的研究
6、分数阶微积分及其在粘弹性材料和控制理论中的应用
7、Riemann-Liouville分数阶微积分及其性质证明
8、中学微积分的教与学研究
9、高中数学教科书中微积分的变迁研究
10、HPM视域下的高中微积分教学研究
11、基于分数阶微积分理论的控制器设计及应用
12、微积分在高中数学教学中的作用
13、高中微积分的教学策略研究
14、高中微积分教学中数学史的渗透
15、关于高中微积分的教学研究
16、微积分与中学数学的关联
17、中学微积分课程的教学研究
18、高中微积分课程内容选择的探索
19、高中微积分教学研究
20、高中微积分教学现状的调查与分析
21、微分方程理论中的若干问题
22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程
23、基于偏微分方程图像分割技术的研究
24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性
25、几类分数阶微分方程的数值方法研究
26、几类随机延迟微分方程的数值分析
27、微分求积法和微分求积单元法--原理与应用
28、基于偏微分方程的图像平滑与分割研究
29、小波与偏微分方程在图像处理中的应用研究
30、基于粒子群和微分进化的优化算法研究
31、基于变分问题和偏微分方程的图像处理技术研究
32、基于偏微分方程的图像去噪和增强研究
33、分数阶微分方程的理论分析与数值计算
34、基于偏微分方程的数字图象处理的研究
35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程
36、反射倒向随机微分方程及其在混合零和微分对策
37、基于偏微分方程的图像降噪和图像恢复研究
38、基于偏微分方程理论的机械故障诊断技术研究
39、几类分数阶微分方程和随机延迟微分方程数值解的研究
40、非零和随机微分博弈及相关的高维倒向随机微分方程
41、高中微积分教学中数学史的渗透
42、关于高中微积分的教学研究
43、微积分与中学数学的关联
44、中学微积分课程的教学研究
45、大学一年级学生对微积分基本概念的理解
46、中学微积分课程教学研究
47、中美两国高中数学教材中微积分内容的比较研究
48、高中生微积分知识理解现状的调查研究
49、高中微积分教学研究
50、中美高校微积分教材比较研究
51、分数阶微积分方程的一种数值解法
52、HPM视域下的高中微积分教学研究
53、高中微积分课程内容选择的探索
54、新课程理念下高中微积分教学设计研究
55、基于分数阶微积分的线控转向系统控制策略研究
56、基于分数阶微积分的数字图像去噪与增强算法研究
57、高中微积分教学现状的调查与分析
58、高三学生微积分认知状况的思维层次研究
59、分数微积分理论在车辆底盘控制中的应用研究
60、新课程理念下高中微积分课程的教育价值及其教学研究
哥们是二中的吧~你去找一个高二的借一下就行了,因为高一和高二的作业是完全相同的!
1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法: 含参问题的定义域要分类讨论; 对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。(3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;②逆求法(反求法):通过反解,用y来表示x,再由x的取值范围,通过解不等式,得出y的取值范围;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域函数的性质:函数的单调性、奇偶性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:作差比较和图像法。应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。例:已知f(x)为奇函数,当x>0时,f(x)=x(1-x),则x<0时,f(x)=_______ 解:设x<0,那么-x>0代入f(x)=x(1-x),得f(-x)=-x(1+x), f(x)为奇函数 所以f(-x)=-f(x) 得f(x)=x(1+x),
6000字,100积分?空手套白狼呢
教学过程: 一、复习引入:上一节课,我们主要学习了有关增长率的数学模型,这种模型在有关产量、产值、粮食、人口等等增长问题常被用到.这一节,我们学习有关物理问题的数学模型二、新授内容:例1(课本第86页 例2)设海拔 x m处的大气压强是 y Pa,y与 x 之间的函数关系式是 ,其中 c,k为常量,已知某地某天在海平面的大气压为Pa,1000 m高空的大气压为Pa,求:600 m高空的大气压强(结果保留3个有效数字)解:将 x = 0 , y =;x = 1000 , y =,代入 得: 将 (1) 代入 (2) 得: 计算得: ∴ 将 x = 600 代入, 得: 计算得:=×105(Pa)答:在600 m高空的大气压约为×105Pa.说明:(1)此题利用数学模型解决物理问题;(2)需由已知条件先确定函数式;(3)此题实质为已知自变量的值,求对应的函数值的数学问题;(4)此题要求学生能借助计算器进行比较复杂的运算.例2在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到,,……, 共n个数据,我们规定所测量的物理量的“最佳近似值”a是这样一个量:与其他近似值比较a与各数据差的平方和最小.依次规定,从,,……, 推出的a=________.(1994年全国高考试题)分析:此题应排除物理因素的干扰,抓准题中的数量关系,将问题转化为函数求最值问题.解:由题意可知,所求a应使y=(a-)+(a-)+…+(a-) 最小由于y=na-2(++…+)a+(++…+)若把a看作自变量,则y是关于a的二次函数,于是问题转化为求二次函数的最小值.因为n>0,二次函数f(a)图象开口方向向上.当a= (++…+),y有最小值.所以a= (++…+)即为所求.说明:此题在高考中是具有导向意义的试题,它以物理知识和简单数学知识为基础,并以物理学科中的统计问题为背景,给出一个新的定义,要求学生读懂题目,抽象其中的数量关系,将文字语言转化为符号语言,即y=(a-)+(a-)+…+(a-),然后运用函数的思想、方法去解决问题,解题关键是将函数式化成以a为自变量的二次函数形式,这是函数思想在解决实际问题中的应用.例3某种放射性元素的原子数N随时间t的变化规律是N=,其中,λ是正的常数.(1)说明函数是增函数还是减函数;(2)把t表示成原子数N的函数;(3)求当N=时,t的值.解:(1)由于>0,λ>0,函数N=是属于指数函数y=类型的,所以它是减函数,即原子数N的值随时间t的增大而减少(2)将N=写成=根据对数的定义有-λt=ln所以t=- (lnN-ln)= (ln-lnN) (3)把N=代入t= (ln-lnN)得t= (ln-ln)= (ln-ln+ln2)= ln2.三、练习:1.如图,已知⊙O的半径为R,由直径AB的端点B作圆的切线,从圆周上任一点P引该切线的垂线,垂足为M,连AP设AP=x⑴写出AP+2PM关于x的函数关系式 ⑵求此函数的最值解:⑴过P作PD^AB于D,连PB 设AD=a则 ∴ ⑵当时 当时2.距离船只A的正北方向100海里处有一船只B,以每小时20海里的速度,沿北偏西60°角的方向行驶,A船只以每小时15海里的速度向正北方向行驶,两船同时出发,问几小时后两船相 距最近?解:设t小时后A行驶到点C,B行驶到点D,则BD=20 BC=100-15t过D作DE^BC于E DE=BDsin60°=10t BE=BDcos60°=10t∴EC=BC+BE=100-5t CD==∴t=时CD最小,最小值为200,即两船行驶小时相距最近3.一根均匀的轻质弹簧,已知在600N的拉力范围内,其长度与所受拉力成一次函数关系,现测得当它在100N的拉力作用下,长度为,在300N拉力作用下长度为,那么弹簧在不受拉力作用时,其自然长度是多少?解:设拉力是 x N (0≤x≤600) 时,弹簧的长度为 y m 设:y = k x + b 由题设: ∴所求函数关系是:y = x + ∴当 x = 0时,y = , 即不受拉力作用时,弹簧自然长度为 m四、小结:通过本节学习,进一步熟悉数学建模的方法,能运用数学模型解决一定的关于物理的实际问题,提高解决数学应用题的应变能力.五、课后作业:要使火车安全行驶,按规定,铁道转弯处的圆弧半径不允许小于600m如果某段铁路两端相距156m,弧所对的圆心角小于180o,试确定圆弧弓形的高所允许的取值范围分析:以弓形的高x为自变量,半径R为孙函数,求出R关于x的函数关系式 解:如图,设圆弧的半径OA=OB=Rm,圆弧弓形的高CD=xm,在RtΔBOD中,DB=78,OD=R-x则∴依题意 R≥600 即 ≥600 ∴≥0 解得 ≤ 或 ≥(不合题意) 答:圆弧弓形的高的允许值范围是(0,). 六、板书设计(略)
我知道能函授问题明白道理
首先你要说下研究函数极值的意义:在很多工程实际中,我们经常需要做一些优化。当然,本人是学飞行器设计的,举个简单的例子:飞机的升力主要由机翼提供,那么机翼的截面到底设计成什么形状,或者机翼的平面投影设计成什么形状,其升力可以达到最大,甚至在保证升力的同时还不能让阻力太大,所以这些都涉及到一个最优的问题。(当然,楼主可以就具体工程实际给出例子),再比如,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是浩大的工程,动不动就几百亿的,如何合理布局(要考虑建设成本、怎么选定线路、建成之后为国民经济带来的效益、运营费用、会不会对环境有影响,那么污染治理费也要考虑),才能让这些公共基础建设的利远大于弊。。。。一般实际问题都是一个或者一组多元函数,那么研究清楚这些问题,对我们的工程实际将有莫大的裨益,对节省能源等等问题都有好处
求f(x,y)=x³+2xy-y³+2的极值,解:令∂f/∂x=3x²+2y=0.............①再令∂f/∂y=2x-3y²=0..................②由②得x=(3/2)y²;代入①式得(27/4)y^4+2y=y[(27/4)y³+2]=0,故得:y₁=0;y₂=-2/3;相应地,x₁=0;x₂=2/3;即有两个驻点:M(0,0);N(-2/3,2/3)。再求两驻点处的二阶导数:A=∂²f/∂x²=6x;B=∂²f/∂x∂y=2;C=∂²f/∂y²=-6y;M(0,0):A=0;B=2;C=0;B²-AC=4>0,故M不是极值点;N(-2/3,2/3):A=-4<0;B=2;C=-4;B²-AC=4-16=-12<0;故N是极大点。极大值f(x,y)=f(-2/3,2/3)=(-2/3)³+2(-2/3)(2/3)-(2/3)³+2=-16/27-8/9+2=14/27扩展资料人们常常说的函数y=f(x),是因变量与一个自变量之间的关系,即因变量的值只依赖于一个自变量,称为一元函数。但在许多实际问题中往往需要研究因变量与几个自变量之间的关系,即因变量的值依赖于几个自变量。例如,某种商品的市场需求量不仅仅与其市场价格有关,而且与消费者的收入以及这种商品的其它代用品的价格等因素有关,即决定该商品需求量的因素不止一个而是多个。要全面研究这类问题,就需要引入多元函数的概念。参考资料来源:搜狗百科-多元函数
数学与应用数学幂函数论文,行咯,多少字的,姐给.
1 北方民族大学毕业论文(设计) 开 题 报 告 书 题目 姓 名 学 号 专 业 数学与应用数学 指导教师 北方民族大学教务处制 2 北方民族大学毕业论文(设计) 开 题 报 告 书 2014年 3月 12 日 姓 名 院(部) 数信学院 课题性质 学 号 专 业 数学与应用数学 课题来源 老师提供 题 目 探索“积分学”所蕴含的数学美 一、 选题的目的、意义(含国内外相同领域、同类课题的研究现状分析): (一)、选题的目的 (二)、选题的意义 3 二、本题的基本内容: 课题任务、重点研究内容、实现途径、方法及进度计划 4 三、推荐使用的主要参考文献: 四、 指导教师意见: 签章: 年 月 日 五、院(部)审查意见: 签章: 年 月 日还有毕业论文(设计)开题报告 姓名性别学号学院专业年级论文题目 函数极值的探究与应用 □教师推荐题目 □自拟题目 题目来源题目类别指导教师选题的目的、意义(理论意义、现实意义): 选题目的:为进一步研究有关函数极值在不同的情况下的求值问题,特别是当函数是一元、二元或者多元时的极值求解。为学习函数极值问题提供一个比较全面的介绍,从而给学者在函数极值的求解提供充足的知识。理论意义:整合函数极值的有关求解问题,有助于函数极值的更进一步研究。现实意义:为初学函数极值问题提供有关的资料,也为考研及掌握函数极值提供较全面的知识准备。选题的研究现状(理论渊源及演化、国外相关研究综述、国内相关研究综述):函数极值是有关函数的一个重要的研究课题,它对于掌握函数有着重要的作用。目前在有关的研究中都有关于函数极值的讨论,并在不少的学报及学术性论文中都有关于函数极值问题的有关见解,同时这些学者都研究的比较透彻、全面。论文(设计)主要内容(提纲):本文重点介绍了有关函数极值的求解问题及其运用。比较系统的介绍当函数是一元、二元及多元时函数极值的不同求解方法,及有关函数极值的定理及证明。 在介绍各元函数求解方法时给出了相应的函数极值求解的例题,有助于理解求函数极值的有关定理,并对函数极值求解的掌握。拟研究的主要问题、重点和难点: 研究的主要问题:不同元函数的极值求解的相关定理及其证明。重难点是这些定理的证明及应用问题。研究目标:给出有关不同元函数的极值的求解定理。 研究方法、技术路线、实验方案、可行性分析:研究方法:分析和综合以及理论联系实际的方法; 技术路线:理论研究; 实验方案:参照书本的相关知识,及相关文章; 可行性分析:综合各种函数极值的求解问题,从而得出自己的研究。 研究的特色与创新之处:综合不同元的函数,给出不同元的函数极值的相关定理与证明,总结出比较系统的有关函数极值的求解问题。进度安排及预期结果: 第七学期第十五周之前:开题报告; 2010年寒假期间:搜集、整理资料,构思、细化研究路线; 第八学期第一至六周:撰写论文,完成“研究路线”中的前四个阶段; 第八学期第七、八周:撰写论文,给出简化阶梯形矩阵在向量空间中的若干重要应用; 第八学期第九周:按照琼州学院教务处制定的《毕业论文撰写规范》排印论文; 第八学期第十周:做好答辩前的准备工作。参考文献: [1] 华东师范大学数学系编.数学分析(第三版)(上)[M].北京:高等教育出版社. [2] 方保镕等.矩阵论[M].北京:清华大学出版社.2004(11). [3]吉艳霞.求函数极值问题的方法探究[J].运城学院学报.2006, [4] 李关民,王娜.函数极值高阶导数判别法的简单证明[J].沈阳工程学报.2009. [5] 李文宇.求多元函数极值的一种新方法[J].鸡西大学学报.2006. 指导教师意见:指导教师签名:年 月 日 答辩小组意见:组长签名:年 月 日 备注:1、题目来源栏应填:教师科研、社会实践、实验教学、教育教学等;2、题目类别栏应填:应用研究、理论研究、艺术设计、程序软件开发等。
摘要: 在历届高考试题解析与应注意的问题中,一元二次函数占有重要的地位,不管在代数中,解析几何中,利用此函数的机会特别多,同时各种数学思想如函数的 ...
数学与应用数学幂函数论文,行咯,多少字的,姐给.
初中数学论文开题报告范文
论文题目: 提高农村初中数学学困生成绩策略的研究开题报告
一、 课题提出的背景及意义:
新课标指出:“人人学有价值的数学”,“人人都能获得必要的数学”,“不同的人在数学上得到不同的发展”,“数学是人们生活、劳动和学习必不可少的工具”,这些都阐明了数学作为基础学科的重要性。而数学后进生就其个人成长来说,由于学科的基础与工具性,及将直接影响到对他们的后继教育、身心健康、全面发展与成才问题;对教育来说,关系到学科教学的平衡性与课程改革的重大战略和基础教育水平的根本大计;对国家来说,关系到劳动者的素质和综合国力的提升。可见,数学学困生的转化问题,成为当前教育常抓不懈的大课题。基础课程改革已经多年了,尽管《课程标准》和教材更新了,教师的教学观念、教学行为也有不同程度的改变,但数学后进生并没有减少,反而有增加的趋势。我所在的学校,近几年来数学成绩50分以下的人数比例逐年增加,很多教师都抱怨现在的学生是越来越难教了。要想改变这种教育质量低下的现状,学困生的转化是关键性问题。由于学困生的形成原因的复杂性,有其自身的原因,也有外部原因:家庭、学校、社会。在转化学困生方面,有许多工作是教师无能为力的、爱莫能助的,如父母离异、学校教育环境、教师素质、应试教育等等,但教师在转化学困生方面起的作用又是不可忽视的,因此我们应着重从教师教育方面来研究如何转化学困生。
二、 国内外关于该课题的研究现状及趋势
对于学困生的成长研究已成为国内外教育专家、理论工作者和实践工作者共同关注的问题。在我国,《中国人民教师》杂志,曾专门阐述学困生的几大困惑,并提供老师及时、有效的辅导案例,同时指出“(1)辅导要与激发兴趣有机结合起来;(2)辅导要新旧结合;(3)辅导要重点突出;(4)辅导中要争取家长配合。”许多优秀的教师结合着自己的教学经验,也提出了新观点,新思想。如:袁妙月(河南省洛阳孟津第一县直中学)发表了新课程标准下初中数学分层教学探究的观点,认为在教学中不能再采用“一刀切”的教学方法,应该面向不同的学生。黄鸿基(福建省晋江市安海镇杏坛学校)谈论了在辅导过程中消除后进生心理上的失败定势,从心理上让学困生不再怕学习,给了很好的指导。李瑞菊老师(上海市闵行区浦江第一中学)从学困生的现状及成因、改善师生关系使学困生进步、教学中多关注学困生,并做好学法指导以及对学困生开展形式多样的辅差工作等方面对数学学困生辅导工作进行了全面的分析。
20世纪70年代,荷兰瓦赫宁根大学发展社会学家创立的角色理论认为,学困生的形成是整个动力系统乃至人格角色偏差造成的,本身无法通过自我调整来改变,这就需要教育者的特定帮助以改变他们的社会角色;前苏联教育学者巴班斯基的同心圆理论认为,影响学生学业成绩的原因有两个:学习的可能性和教学的、发展的、教育的社会条件,前者与后者是内因和外因的关系,这种关系可以用若干同心圆组成的圆表示。20世纪80年代,日本教育学者北尾伦彦的研究表明,造成学习困难的因素可分三个层级,一次性因素是直接相关因素(包括教学内容、教法、学生学习态度与学习习惯等因素),二次性因素、三次性因素是间接相关因素(包括学生的非智力因素及环境因素)。对于学习困难学生,日本教育界往往通过学习困难学生“治疗日”来进行教育帮助,这种方法是大阪的一所中学提出来的,这些材料为我们调查分析作了很好的铺垫。
三、课题研究的理论依据:
1、学生的学习尤其需要情感、意志、求知欲、动机等情意因素的积极参与。其中,动机在情意系统中居于核心地位,它是个体学习动力的主要来源,又是把各种动力因素联系在一起的纽带,直接影响学生的学习行为。就数学学习而言,大部分学习困难的学生都以认知障碍作为起点的,这与数学的特性与某些学生的思维发展水平不适应有关。由于数学语言具有高度的抽象性和概括性,学生学习数学时不能真正理解数学语言和意义,从而引起很多困难。以致在听课、阅读时造成误读、错误,进而成为认知上的障碍。
2、《江苏省中小学数学课程标准》中强调“改革教学过程,促进学生学习方式的改善”,对于学习困难的学生,教师要通过对教学内容的“操作化”组织,将“做”、“想”、“讲”有机结合,帮助“学困生”内化学习内容,帮助学生发现个人的学习成就和意义,指导学生检查和反思学习过程,激励学生更有效的开展学习。
3、美国心理学家布卢姆在掌握学习理论中指出,“许多学生在学习中未取得优异成绩,主要问题不是学生的智慧能力欠缺,而是由于未得到适当的教学条件和合理的帮助造成的”,“如果提供适当的学习条件,大多数学生在学习能力、学习速度、进一步学习动机等多方面变得十分相似”。
4、“低、小、多、快”原则:“低”即“低起点”;“小”即“小步子”;“多”即“多活动”;“快”即“快反馈”。
四、课题研究的内容和方法
(一)主要内容:
1、农村初级中学数学学困生的成因及学困生的心理分析,包括研究导致学困生学习困难的个人、学校、家庭以及社会因素。
2、数学课堂教学如何关注学困生、适应学困生,研究学困生的转化策略。
3、如何开展有效的课外辅导转变学困生。
4、教学日记促进学困生的转化的研究。
(二)研究方法:
借鉴现代教育理论,采取行动研究法,在实践中提升理论,在理论指导下完善实践。采取跟踪调查法、量化分析法等通过制定计划、方案实施、反思总结等阶段完成。
课题研究的目标:通过本课题的研究,探索一套适合农村初中实际情况让学困生喜欢数学、爱学数学的有效途径和方法,尊重和关爱可以唤醒、激励每一个学生。“只有不会教的教师,没有教不好的学生”,只要方法得当,通过教师的不懈努力,就一定能让每个学困生爱学数学,激发他们的学习兴趣,增强他们的求知欲望,使他们由“厌学”到“学有所获”到“乐学”,使他们能主动、积极地学习数学,从而大面积提高了教育教学质量。
五、课题研究的工作步骤
(一)课题研究准备阶段:
1、成立课题组成员,共同学习商讨制定课题实施方案
从2014年3月份开始,经过多次的商讨和修改,小课题《提高农村初中数学学困生成绩策略的研究》作为学校的一项教研课题在校开展,学校领导高度重视,希望能通过该课题的研究,带动学校的信息技术教学发展,提高教师的教科研能力,为教学服务,为提高学校的教学质量而尽力做好。3月份开始,我们开始按照“课题申请”要求成立了课题组,并召开了课题组成员会议,会议上商讨了如何具体分工、借鉴哪些方面的经验成果和教学理念,具体通过哪些步骤进行课题研究。课题组的成员都认真学习关于本课题研究的主要内容,研究并制定了课题方案。
2、有关理论学习
课题具体方案制定后,课题组成员就着手学习整理和课题相关的国内外相关理论和经验,了解国内外相关课题的思想理念、研究成果和研究进展情况,以此作为该课题具体开展的参考和借鉴。
3、课题组实验教师资料准备
实验班、对比班学生基本情况分析;课题研究的教案、论文等原始材料。
4、深入课堂分析
通过以上的学习,在夯实了理论基础的同时深入本校数学课堂,结合课题需要分析在我校课堂教学存在的问题,寻找适合我校课堂教学特点和共同点,明确课题开展的具体方向和实施过程,保证课题研究内容充实,实效性强,使课题研究具有科学性、时代性、指导性、可行性。
5、撰写开题报告
在理论学习的同时,进一步完善了课题的实施方案,撰写了开题报告,在请教过前辈和课题给讨论后,我再次修改了原来的课题实施方案和开题报告。
(二) 课题研究实施阶段
1、课题的确定后,为更深一步进行研究,进行调查是十分重要的。为此,根据几次的学生调查和老师课堂教学情况,了解学生学习数学心理障碍的`主要因素,掌握数据,了解现状,为课题方案的实施和课题的完成打下基础。
2、课题成员对课题的理解撰写有关论文、教学设计、案例、反思等。
3、对学生的课堂气氛进行跟踪了解。在测试中进行了解,及时发现问题,解决问题,看通过课堂训练能使学生达到所定的目标。
六、课题研究的结果:
(一)、初步找到了农村初中数学“学困生”的形成原因,并探索出转化“学困生”的措施方法。
(二)、经过近一年的课题研究,运用以上措施方法对“学困生”实施帮扶、转化,产生的比较好的效果:
1、学生对于数学的兴趣正逐步增强。
2、促进了“学困生”的主动发展。经过一年的实验,学生学习数学的积极性和主动性被充分调动起来,对数学学习表现出极大的热情和兴趣。
3、从最近两年中考、期中、期末调研考试成绩分析看,数学平均成绩在稳步提高,全市中考数学平均分列全市中游。特别是低分率下降幅度较大,说明“学困生”转化工作成绩较为显著。
七、可行性分析
九年制义务教育的目的是普及基础教育,合格率是检验一所学校办学是否成功的标准之一。我校地处三县交界,生源情况参差不齐,学困生所占的比例很大,严重影响了整个班级、整个年级的共同进步,严重影响了学校的声誉。这些学生刚入初中就已经学数学很困难,随着难度的逐渐加大,情况会越来越糟,初中学习生涯无疑是一种痛苦折磨。所以改善这类学生数学学习的信心、求知欲、学习动机、学习速度、思维发展水平等学习状况,不仅对学校来讲意义重大,而且对学生的一生的影响尤为重要。鉴于此,我申报了小课题,希望在专家的指导下,与数学组的同行一道,通过努力能够改善我校初中数学学困生的学习状况。
本课题研究中的“数学学困生”是指:智力与感官正常,但由于在数学学习中,学习方法或学习习惯不恰当,导致学习效果低下的学生。通过教师有针对性地帮助,这部分学生的数学成绩是可以提高的。