首页 > 学术论文知识库 > 编辑基因婴儿论文参考文献

编辑基因婴儿论文参考文献

发布时间:

基因编辑婴儿

基因编辑的话会让父母觉得孩子并不算是自己的孩子了而且在伦理道德上也存在着一些严重的伦理道德问题比如说基因因问题还有就是遗传问题

因为基因编辑的孩子有违背正常伦理所以不允许这样。

加州大学伯克利分校(University of California Berkeley)的分子生物学家Jennifer Doudna说,“这项技术还没有准备好。”Doudna是CRISPR-Cas9基因组编辑系统的先驱,“这并不令人意外,但令人非常失望和不安。”

基因编辑胚胎在全球引起巨大争议的一个原因是,如果允许婴儿出生,这些编辑过的基因就可以传递给后代——这是一种影响深远的干预,被称为改变生殖系。研究人员一致认为,这项技术有一天可能有助于消除镰状细胞贫血和囊性纤维化等遗传疾病,但在用于人类改造之前,还需要进行更多的实验。

而目前许多国家都禁止植入基因编辑胚胎。据《自然》报道,俄罗斯有一项法律,禁止在大多数情况下进行基因工程,但尚不清楚这些规则是否会在胚胎基因编辑方面得到实施,或者如何实施。2017年,一项针对多个国家的辅助生殖法规的分析显示,俄罗斯关于辅助生殖的法规并没有明确提到基因编辑。

在禁止以繁殖人为目的的生殖性克隆,并且明确注明这种行为是“反人类物种的罪行”。随着技术的发展,法国人还就医疗辅助生育、安乐死、修改基因等问题展开过长时间的讨论,目前,法国法律仍不允许修改受精卵治疗遗传病,法国专家认为,基因修改面临着疗效、安全性、后遗症等尚不可知的重大问题。

基因编辑婴儿”如果确认已出生,属于被明令禁止的,将按照中国有关法律和条例进行处理。

编辑基因婴儿论文参考文献

基因支持着生命的基本构造和性能。下面是我为大家精心推荐的关于基因的生物科技论文 范文 ,希望能够对您有所帮助。

基因研究

引起人们大惊小怪的,就是让父母能够有意识选择孩子遗传特性的技术。在可预见的未来,除了用基因方式医治少数遗传疾病,如囊肿性纤维化外,改变基因的成人还不可能出现。改变成人的基因还不是人们敢于轻易尝试的技术,要恢复或加强成人的功能,还有许多更简单、更安全、也更有效的 方法 。

胚胎选择技术是指父母在怀孕时影响孩子基因组合的一系列技术的总称。最简单的干预方法就是修改基因。这不是一种大刀阔斧的变更,因为它要获得的效果就像筛选各种胚胎、选择具有所需基因的胚胎的效果一样。事实上,这种胚胎筛选程序已经在胚胎植入前的基因诊断中 应用了。这种技术已经用了十几年,但还在试验,在未来5到10年将臻于成熟。随着这些技术的成熟,可供父母选择的方案会大大增多。

再进一步将出现对生殖系统的干预――即选择卵子、精子、或更可能的是选择胚胎的第一细胞。这些程序已经在动物身上应用,不过使用的方式对于人类还缺乏安全性和可靠性。

对人类比较可靠的一种方法也许是使用人造染色体。这项技术听起来像是不可置信的科幻电影,但已经用在动物身上了。人造染色体植入老鼠身上,连续几代被传了下去。人造染色体也用在人体细胞培养中,在数百次细胞分裂中都能保持稳定。因此,它们可以充当插入基因模块的稳定“平台”。这些被插入的基因模块包括在适当时候让基因兴奋或休息的必要控制机制,就像在我们46个染色体中的正常基因的激活或休息,取决于它们所处的生理 组织类型,或取决于它们遇到的 环境状况一样。

当然,为安全起见,需要早期介入才能使焦点集中。你不能去修改一个在胎儿发育过程中生理组织不断变化时被激活的基因,因为我们对这一过程所知甚少,有可能发生不想要的或灾难性的副作用。所以,在人体内使用人造染色体的首次尝试,多半要让被植入的基因处在“休息”状态,到成人阶段才在适当的生理组织中被“激活”。

执行这种控制的机制已经用在动物实验中,实验的目的是观察特定基因在发育成熟的有机体中的作用。当然,在体内存在着始终控制基因的机制。不同类的基因在不同的生理组织内的不同地点和时间被激活或休息,这对未来的基因工程师来说是幸运的,因为与我们现有的基因相 联系的已证实的调节结构可以复制下来,用以执行对植入基因的控制。胚胎选择的目标

预防疾病可能是胚胎选择的最初目标。这类可能性也许不久就会远远超出纠正异常基因的范围。例如,最近的研究显示,患有唐氏综合症的孩子,癌症的发病率降低了近90%。很可能是三体性21(即染色体21的第三个复制品,具有增强基因表达水平的作用,导致智力迟钝和其他唐氏综合症的症状)对癌症有预防作用。假如我们能鉴别出染色体上的哪些基因对癌症有预防作用,会怎么样呢?基因学家也许会把这类基因放在人造染色体上,然后植入胚胎,使癌症发病率降低到唐氏综合症患者的水平,又可以避免复制染色体21上其他基因所引起的所有问题。许多其他类似的可能性无疑都会出现,有些可能性几乎肯定是有好处的。

人造染色体的使用可能会进行得很顺利,尤其因为染色体本身在用于人体前可在实验室环境中进行试验。它们可以在动物身上试验,成功后在基本相同的条件下用于人体。如今,每一种基因疗法都是重新开始的,所以不可能获得绝对的可靠性。

如果有明确的基因修改案例显示这样做是有意义的,似乎是安全的,不可能更简便更安全了,那么人们就会对它们表示欢迎。尽管如此,目前还没有足够的证据说明值得这样做。未来基因治疗专家会产生各种各样的想法,他们会进行试验,观察这种疗法是否可行。如果可行的话,我们就不应该拒绝。例如,降低癌症和心脏病的发病率,延缓衰老,是每个人都非常需要的增进健康的手段。

用基因延长寿命

防止衰老是个非常有意义的科研领域,因为这件事似乎很有可能做到,而且是绝大多数人所强烈需要的。如果能通过揭开衰老过程的基本程序,发现某种手段能使我们开发药物或其他对成人有效的干预手段,那么人人都会需要。

胚胎工程可能比对成人的基因疗法更简单,更有成效。因为胚胎中的基因会被复制进身体的每一个细胞,能获得具体组织的控制机制。所以很可能对胚胎的干预 措施 对成人是行不通的。这样一来,父母很可能把怀孕看作赋予孩子健康条件的机会――一次不可错失的机会。

如对衰老生物学的研究投入资金,会极大地加速“衰老治疗”。如今,这个领域资金非常缺乏。许多资金都用于研究治疗老年病的方法上,没有用来搞清楚衰老的基本过程,而许多老年性疾病(如癌症、心脏病、早老性痴呆症、关节炎和糖尿病)都是由这一过程引起的。能加速衰老防止研究进程的另一件事,就是提高这个领域的形象。这个 工作已经开始了,但非常缓慢。吸引年轻的科研人员和严肃的科学家进入这个领域是至关重要的。抗衰老(即延长孩子的寿命)可能将是生殖干预的重要目标,但不是唯一的目标。为孩子谋最大福利是人类的天职。事实上,全球民意测验已经显示,在被测的每一个

国家都有可观的人数对增强孩子的身体和脑力健康感兴趣。他们考虑的不是如何避免某些疾病,而是用干预手段改善孩子的容貌、智力、力量、助人为乐精神和其他品质的状况。一旦技术达到可靠程度,许多人都需要这类干预手段。甚至那些没有这方面压力的人也会这么做,目的是不让孩子处于劣势。当然,人们会很小心,因为他们并不想伤害孩子。总之,如果干预手段失败,他们就得忍受其结果,承受犯罪的感觉。是一个不受欢迎的选择吗?

社会也许并不欢迎某些父母的选择。在美国性别选择是合法的,但在英国和其他许多国家就是非法的。不少人认为,尽管西方国家并没有出现严重的性别失衡,很难说父母的选择伤害了谁,但这个程序在美国也应该是非法的。另一个即将来临的决定是父母是否因为大量基因疾病而进行筛选。父母们不久就能够选择孩子的身高和智商,或选择性情气质的其他特点――容易患病的机制也许不久就会在基因解读中表现得清清楚楚。

胚胎选择技术的第一批希望所在是基因测试和筛选,即选择某种胚胎而不是另一种。一开始,让许多人接受这个技术是困难的,但要控制它几乎是不可能的,因为这种胚胎本来就可能是完全自然形成的。这样选择也许是令人苦恼的,但不会发生危险,我猜想它们给我们带来的好处比问题多。有些人担心这样一来会失去多样性,但我认为更大的问题在于父母所选择的胚胎可能会产生一个有严重健康问题的婴儿。那么是否应该允许父母做这样的选择呢?例如,失聪群体掀起了一个极力反对耳蜗移植的运动,因为耳蜗移植伤害了聋哑 文化 ,把聋哑视作残疾。大多数非聋哑人正是这样看待他们的。有的聋哑父母表示,他们要使用胚胎选择技术来确保他们的孩子继续聋哑。这并不是说他们拿出一个胚胎来毁坏它,而是选择一个能造成一个聋哑婴儿的胚胎。

这造成了真正的社会问题,因为社会必须承担这类健康问题所需的医疗费用。如果认为父母的确有权作这样的选择,我们根本没有理由去重视健康儿的出生而轻视有严重疾患的婴儿,那么我们将无法控制这类选择。但如果我们认为存在问题,并极力想与之进行斗争的话,我们会发现这种斗争是很有前途的。

放开手脚,取消禁令

关于由人体克隆产生的第一例怀孕事件见报后不久,美国总统乔治?W?布什就表示支持参议院的一份提案,该提案宣布所有形式的人体克隆皆为非法,包括旨在创造移植时不会被排斥的胚胎干细胞,即治疗性克隆。我认为这种禁令下得为时过早,也不会有效果,而且会产生严重的误导。就是说,这个禁令无疑是错误的。它根本无法实质性推延再生性克隆的问世,我认为这种类型的克隆将在10年内出现。这个禁令把 政治、宗教和 哲学因素注入了基础研究,这将是个危险的案例。这个禁令的立法理念把更多的关注赋予了微乎其微的小小细胞,而对那些身患疾病、惨遭折磨的人却视而不顾。这个禁令用严厉的刑事惩罚(10年监禁)来威胁胚胎科研人员,这在一个妇女在妊娠头三个月不管什么理由都有权堕胎的国家里,简直是不可思议的。

美国对胚胎研究的限制,已经对旨在创建再生 医学的生物技术的 发展产生了影响。这些限制延缓了美国在这个领域的前进步伐,而美国在生物医学的科研力量是全球首屈一指的。如今这类科研已转移到英国和其他国家去了,例如新加坡,正在为一项研究胚胎干细胞的庞大 计划提供资金。这种延误之所以非常不幸,是因为本应发生的好事如今却没有发生。对多数人来说,10年或20年的延误不是个大问题,但对于演员迈克尔?J?福克斯(Michael )以及其他帕金森氏病和早老性痴呆症患者来说,却是生与死的问题。

对各种再生可能性的无知,往往会引起人们的恐惧。但这种无知却不能成为公众政策的基础,因为公众的态度会迅速改变。25年前,体外受精着实让人们猛吃一惊,体外受精的孩子被称作试管婴儿。现在我们看到这些孩子与他小孩没什么区别,这个方法也已成为许多没有孩子的父母的明确选择。

不管是出于意识形态还是宗教原因,把新技术加以神秘化,把它当作某种象征来加以反对,都不会有效推迟即使是最有争议的 应用。这种反对态度只会扼杀本可以转化为人人支持的生物医学新成果的主流科研。

人类克隆会在某个国家实现:很可能是以暧昧隐秘的方式实现,而且甚至在确认安全之前就实现。抗议和禁止也许会稍稍推迟第一个克隆人的诞生,但这是否值得花费严肃的人类立法成本呢?

不管我们多么为之担心,人类胚胎选择是无法避免的。胚胎选择已经存在,克隆也正在进行,甚至直接的人类生殖工程也将出现。这样的技术是阻挡不了的,因为许多人认为它能造福于人类,因为它将在全球数以千计的实验室里切实进行,最重要的是,因为它只是解除生物学的主流生物医学科研的一个副产品。

对于迅速发展的技术,我们要做的重要的事,不是预先为它设立条条框框。务必要牢记,同原子武器相比,这样的技术是没有危险性的。在原子武器中,稍有不慎,众多的无辜旁观者即刻就会灰心烟灭。这些技术仅对那些决定挺身而出使用

他们的人才具有危险性。如果我们把关于这些技术的现在的希望和恐惧带进将来,并以此为基础进行预先控制,从而扼杀它们的潜力的话,我们就只能制定出非常拙劣的法律。今天,我们并没有足够的知识来预测这些技术未来会出现什么问题。

比较明智的方法是让这项技术进入早期 应用,并从中学些东西。性别选择就是现实世界的 经验 能告诉我们一些事情的极好例子。许多人想要控制性别选择,但与不发达国家不同,在发达国家,自由选择性别并没有导致性别的巨大不平衡。在美国,父母的选择基本上男女平衡的,女孩占微弱优势。以前有人认为,如果给了父母这种选择权,会出现严重问题,因为男孩会过剩。但事实并非如此。这种危险是我们想象出来的。有些人认为,父母不应该对孩子拥有这种权力,但他们究竟担心什么,往往非常模糊。在我看来,如果父母由于某种原因的的确确需要一个女孩或男孩,让他们了却心愿怎么会伤害孩子呢?相反的情况倒的确值得担心的:如果父母极想要一个男孩,结果却生了个女孩,这个“性别错误”的孩子可能就不会过上好日子。我相信,让父母拥有这种选择权,只有好处没有坏处。

我们还可以想象出有关性别选择的各种麻烦事件,编出一系列可能发生的危险 故事 。但如果将来事情发生了变化,性别不平衡现象真的出现了,我们再制定政策处理这类特殊问题也不迟。这要比现在就对模糊的恐惧感和认为是在戏弄上帝的思想观念作出反应,无疑要明智得多。这是民主化的技术吗?

阻止再生技术的行为使这些技术造成 社会的极端分裂,因为阻止行为仅仅使这些技术为那些富裕的人所用,他们可以非常容易地绕过种种限制,或者到国外去,或者花大钱寻求黑市服务。

其核心是胚胎选择技术,如果处理恰当,它可以成为非常民主化的技术,因为早期采取的各项治疗措施可以面向各种残缺者。把智商在70到100(群体平均数值)的人向上提高,要比把智商从150(群体百分比最高值)提高到160容易得多。要让本已才智卓绝的人再上一层楼,那非常困难,因为这必须改善无数微小因素的复杂的混合配备状况,正是这些因素合在一起,才能创造出一个超人来。而改善退化的功能则要容易得多。我们并无超人的案例,但我们却有无数普通人为佐证,他们可以充当范例,引导我们如何去修改一个系统,使之至少达到正常的功能。

我觉得,人们以为我们是平等的创造物,在法律面前人人平等,于是就认为我们大家都是一样的。其实不然。基因抽奖可能是非常非常残酷的。你去问问行动迟钝的人,或问问有这样那样基因疾病的人,他们是不会相信什么基因抽奖是多么美妙公平这种抽象言论的。他们就希望自己能更健康些,或者获得某些方面的能力。这些技术的广泛应用,就在许多方面创造了一个平等的竞技场,因为那些本来由于基因原因处于劣势的人也有了竞争的机会。

另一个问题是,这些技术就像其他技术一样, 发展很快。在同代人之间,富人和穷人的应用差距不会很大,而在两代人之间的应用差距却会很大。如今,甚至比尔?盖茨也无法为他的孩子获得某种在25年后中产阶级也认为是很原始的基因增强技术。

所谓明智的一个重要因素,就是要懂得什么我们有权控制,什么无权控制。我们务必不要自欺欺人,以为我们有权对是否让这些技术进入我们的生活进行选择。它肯定会进入我们的生活。形势的发展必然要求我们去使用这些技术。

但在我们如何应用它们、它们会如何分裂我们的社会,以及它们对我们的价值观会产生什么影响等问题上,我们的确有某种选择余地。这些问题我们应该讨论。我本人对这些技术是满怀希望的。它们可能产生的好处会大大超过可能出现的问题,我想,未来的人类在回顾这些技术时,会觉得奇怪:我们在这么原始的时代是如何生活的,我们只活到75就死了,这么年轻,而且死得这么痛苦难过。

政府和决策者不应该对这些研究领域横加阻挠,因为由于误用或意外所造成的伤害,并不是仅有的风险。能够挽救许多人的技术因为延误而使他们继续遭受痛苦,也是一种风险。

当务之急是倾全力获得足够的安全性,防止意外的发生,而要做到这点,协调者看来要牺牲许多间受影响的人的安全。疫苗的例子就是这样。疫苗有许多年没有进展,因为引起诉讼的可能性很大。如果那个孩子受了伤害,会产生巨大的后果。然而很明显,对接受疫苗接种的全体人而言,是非常安全的。

我认为人们对于克隆也是同样的问题。它在近期可能会影响最多一小部份人。在我看来,拒绝会改变数以百万患者命运的非常有可能的 医学进步,振振有词地宣称这是对人类生命的尊重,这是一种奇怪的逻辑。

失去人性还是控制人性?

另一种祁人之忧,认为任意篡改生物机制有可能使我们失去人性。但是,“人性”究竟是与某些非常狭隘的生物结构有关,还是与我们接触世界的整个过程、与我们之间的相互作用有关呢?例如,假如我们的寿命增加一倍,会不会使我们在某种意义上“失去人性”呢?寿命延长必然会改变我们的生活轨迹,改变我们的互动方式,改变我们的 组织制度、家庭观和对 教育 的态度。但我们还是人类,我敢断言我们会迅速适应这些变化,并会对以往没有这些变化的生活觉得不解。

如果原始的狩猎者想象自己生活在纽约城,他们会说在那样的地方他们可能不再是人了,他们认为那不是人的生活方式。可是今天我们大多数人不仅把纽约的生活看作是人的生活,而且是大大优于狩猎生活。我想,我们改变生物机制所发生的变化也是如此。

目前人类还处在进化的早期阶段,至多是青少年期。几千年后,未来的人类来看我们这个时代,会认为是原始的、艰难的同时充满希望的时代。他们也会把我们这个时代看作是人类发展的特殊的光荣的时刻,因为我们为他们的生活打下了基础。我们很难想象即使一千年后的生活会是什么样子,但我猜想我们现在的生物重组会大大影响未来的人类。

点击下页还有更多>>>关于基因的生物科技论文范文

最近被朋友圈和各大公众号基因编辑婴儿的文章链接和评论刷屏了,因为这个事情和每个人的未来息息相关,涉及范围广泛,不同的大V出现了两极分化的观点,不同的观点也一直在激烈的碰撞。生物医学界普遍强烈谴责这种行为,我们群也进行了激烈的讨论,尤其群里有生物医学界的学霸。发表了两点观点:“在人没有疾病的情况下,人为的为了做实验编辑基因,对人不带来治疗效果,而是带来潜在风险”。这两个小孩原本就是健康的小孩,在我眼里这样的做实验人的目的完全是为了自己的成功和出名。第二点,学霸提到:“还记得几个月前出了个新闻用基因编辑方法可以把蚊子灭绝吗?同样的技术,用在不同生物上也会有类似的效果,制约大家的就是行业规范和伦理。结果,现在,这些全被击穿了”。这样的一个如同基因的核弹武器具有巨大的威力,是需要收到严格限制和管控的。因为威力巨大,用的人不同,会具备毁灭性打击,进攻总是比防守容易。千万不能低估大众的想象力。这次的新闻广泛的传播,基因编辑撕开了一个口子后,有多少人会幻想去做这方面的试验,尤其是有先天性遗传病的,生健康小孩困难的,已经有不同想法的有钱人,觉得自己这代不行,想要靠下一代好基因的普通人.......第三点,“这样的生物技术出现,以后就会让人种分离——穷人和富人,无论生理技能和寿命都将不一样”。人人生而平等,就是无论贫穷还是富有,下一代的基因都是相差无几的,这个情况如果下去,无非这些结果。“弱小和无知不是生存的障碍,傲慢才是”——《三体》里面贯穿整个小说的一句话想送给大家。当我们拥有不属于自己的超力量时候,比如核弹,基因改造.....就像一个反对的大V所说“当人类把自己想象成上帝,那将是最可怕的灾难的开始。”也有一个大V说了这个事件对未来的影响“基因编辑婴儿,这个技术已经打开,那就关不上了,尤其是有明确好处时,舆论的谴责,法律的禁止,都无法阻止想要的人们得到它。接受也罢,抗拒也罢,它终将改变人类。”我不否认这个以后可能会发展到,地下操作这些事情,完全禁止总是非常理想化的。现实中,不同的人的道德水平和关于道德伦理的理解实在是千差万别的。很多人看到这次的新闻,仿佛置身于科幻文章一样。我自己从小也是科幻谜,初中开始就一直每月看《科幻世界》,高中开始在《科幻世界》中追刘慈欣的《三体》连载,现在反复看了很多遍。那么多年前那么多篇科幻世界的文章,对其中两篇婴儿的基因改造科幻文,非常印象深刻。第一篇短篇科幻文章:里面的科学家是顶尖的生物医学界的科学狂人,他致力于通过科学改造出来最完美的人类小孩,设置出来完美小孩之前,他的朋友一直反对他在做上帝的工作,但是已经来不及反对了。就像这两天的双胞胎已经出生了。很颠覆的一刻来临,他虔诚的看着他的实验室出来的那个完美婴儿,结果出来的是一个非常普通,和别的婴儿毫无差别的人类小孩……这篇科幻明显的写了一个故事,我们不断追求完美的小孩其实已经存在,宇宙创造我们就已经很完美了。第二篇短篇科幻文章:一位女科学家,觉得每个婴儿从成长的过程要学的东西,是耗费十几年的。因为如此,科技的增长才非常缓慢。于是她研究出,母体的记忆,感受,经历,和思维是同样遗传给腹中胎儿的。她疯狂开始做人体试验,第一个实验中婴儿是研究所的一位保洁阿姨,怀孕的小孩。当这个小孩还在肚子里面的时候,已经拥有保洁阿姨这半辈子的记忆,感受,学识,思维所有她脑中的东西,在小孩脑子也有。于是小孩子尚在肚子里的时候,开始和她们两个沟通聊天。和她妈妈回忆起,她妈小时候,大字不识,成长过程差点在农村里面就夭折的各种辛苦的经历。回忆她那时候去县城,几十公里,从农村一路走过去,脚磨的起泡,在路边饥渴难耐的感觉。保洁阿姨对着腹中胎儿说,这些都过去了,现在生活也慢慢变好了,期待着胎儿的降生。结果胎儿反应剧烈,她对世界所有的认知都是母亲这么艰辛的半辈子,她受不了自己也要过那样的人生,这与母亲腹中羊水温暖的环境天渊之别。不管这个女科学家和保洁阿姨怎么对胎儿说未来的生活会越来越好的,胎儿始终不信,总记得她妈这么多年的苦难……觉得自己是肯定过不了那么难的生活,然后婴儿就在肚子里面用脐带缠绕了自己的脖子,自杀了。直到这样,这个女科学家才明白,无知其实是对婴儿成长的重要保护。我看过那么多篇科幻文章,当我们想象自己在那个世界之后,再回到现实世界,会异常珍惜现实世界的平和和幸福,这些我们习以为常的东西,待我们进入科幻的世界后,才会发现,我们以为的理所当然,其实只是偶然。

基因编辑婴儿会带来的风险:有严重缺乏科学评估验证,安全性存在不可预知风险。

在伦理与道德上,在严重缺乏科学评估验证,安全性存在不可预知风险的情况下,贸然开展以生殖为目的的人类生殖细胞基因编辑临床操作,严重违背了基本伦理规范和科学道德。

扩展资料:

科技工作者必须加强科学道德自律,强化自我管束,在探索和创新活动中必须遵守相应的伦理道德准则和法律法规。针对科学技术发展中出现的新情况、新挑战,科技界要深入思考,认真研究,未雨绸缪,加强教育,完善相关行业规范和伦理指南,以保证科技界从事负责任的研究。

有关部门要动态完善相关法规,严格审查监管程序,适时推进有关立法工作,严密防范科研伦理不端行为发生。

参考资料:中国新闻网-工程院:“基因编辑婴儿”严重违背伦理和科学道德

南方科技大学基因编辑婴儿事件

这个也是不一定的,因为基因的话会有选择性表达的

如果有人设计了一种方法,可以创造一个经过基因工程改造的婴儿,George Church肯定会知道的。

在他位于哈佛医学院的迷宫般的实验室里,你可以看到研究人员正在赋予大肠杆菌一些自然界从没有见过的基因。Church说自己的实验室是新技术基因的中心,人们在这里可以按照自己的意愿重新塑造一个生物。

我去Church的实验室参观的时候,他建议我去和年轻的博士后Luhan Yang谈谈,这是一个来自北京的年轻人,是编辑CRISPR-Cas9基因技术的重要参与者。Yang和Church一起创办了一家小公司,从事猪和牛的基因改造,加入优良基因,去掉劣质基因。

在采访Yang的时候,我找机会问出了自己真正想问的问题:这些技术能应用于人类吗?我们能够改进人类的基因吗?科学界对此问题的主流态度是,这样做是不安全的、不负责任的,甚至是不可能的。但是Yang不这样么想。她说,当然可以。实际上,他们的实验室有一个项目,就是在研究如何做到这一点。她打开自己的笔记本电脑,给我看了一个PPT文件,标题是“生殖细胞系编辑会议”。

这就是一份改变人类遗传的技术建议书。

“在中国已经在进行这样的实验了”

“生殖细胞”是生物学家称呼精子和卵子的术语,精子与卵子的结合形成了胚胎。通过编辑生殖细胞或胚胎的DNA,有可能减少后代的致病基因,并将这样的特征通过基因固定下来,传递下去。这样的技术可以用于消除囊肿性纤维化等家族病。Yang说,还有可能植入一个终生抗感染的基因等等。这将是医学史上一次划时代的进步,在本世纪医学史上的地位,将与疫苗在上个世纪的地位一样重要。

当然,这只是一种展望。人们担心,对生殖细胞进行基因改造将创造出一个由超级人类和为有钱人设计婴儿的工程师构成的反乌托邦社会。

在最初的构想提出仅仅三年后,CRISPR技术已经被生物学家作为一种改变DNA的寻找和替换工具广泛应用,甚至可以只改变DNA中的一个字母。这项技术非常精确,以至于很多人都期待它能成为一种新的基因疗法。这个想法的思路是,让医生直接纠正出错的基因,比如说镰状细胞贫血症患者血细胞中的基因。但是这种基因疗法对生殖细胞没有作用,DNA的改变也不会遗传给后代。

相反,通过生殖细胞改变实现的基因变化可以遗传,而这使这种想法令人觉得不愉快。到目前为止,伦理上的顾虑始终占据上风。有十几个国家,不包括美国,已经禁止对生殖细胞进行基因改造,科学界对于这种技术的风险也没有形成一致意见。欧盟人权和生物医学委员会说,篡改基因库是对“人类尊严”和人权的侵犯。

转基因婴儿,有可能吗?

但是这些声音都是在精确的改变生殖细胞基因之前发出的,而现在,由于有了CRISPR技术,这已经成为可能。

Yang所描述的实验并不简单,大致是这样的:研究人员希望能从纽约的一家医院获得一位因BRCA1基因变异导致卵巢癌的女性的卵巢。然后他们与哈佛大学专门从事抗衰老研究的David Sinclair实验室合作,提取出不成熟的卵细胞,并在实验室中促使其发育和分裂。Yang将对这些细胞采用CRISPR技术,纠正其中的BRCA1基因的DNA。其目标是创造一个没有基因错误,从而不会使这位女性患癌症的卵细胞。

和以前我采访过的几位科学家一样,Yang不再进一步回答我的问题,所以我不知道她所描述的实验是正在进行,已经取消,还是已经快要发表了。Church在电话中把它叫做“非项目”,至少在形成一个可公布的结果之前是这样的。

不管这个具体实验的命运如何,人类生殖细胞基因改变都已经成为一个研究概念。至少在波士顿、中国和英国的科学家都在研究这个课题。号称聚集了众多世界一流生殖学博士的OvaScience生物技术公司也在致力于这方面的研究。

这些研究团队的目标是,阐明有可能使儿童没有某些特定的会引起遗传病的基因。如果有可能纠正女性卵细胞或男性精子中的DNA,就可以在体外受精中用这样的生殖细胞生成一个胚胎,然后发育成一个婴儿。也有可能用CRISPR技术直接编辑早期发育阶段的体外受精胚胎的DNA。《MIT技术评论》采访的几位科学家说,在中国已经在进行这样的实验了,介绍基因改造后的胚胎发育状况的文章也即将发表。这些人不愿意公开自己的身份,因为这些文章还正在审核之中。

这一切都意味着,生殖细胞基因改造研究的进展已经超过了所有人的想象。波士顿体外受精中心的创始人之一Merle Berger说,“我们讨论的是关系到全人类的问题,它将是这一科研领域中最重大的问题。”Berger预测,修复会引发严重遗传疾病的基因将引起公众的广泛关注,但是这项技术也会引起公众的争论,因为“每个人都想要一个完美的孩子”,而这会导致准父母们选择孩子眼睛的颜色直至智力水平。“我们以前一直在讨论这样的事情,但是我们从来没有机会这样做。”

“编辑胚胎,非常容易”

用CRISPR技术编辑人类胚胎有多容易呢?专家说,非常容易。“任何掌握分子生物学技术和胚胎发育知识的科学家都能完成这项工作,”曾于2012年参与发现用CRISPR技术编辑基因的生物学家Jennifer Doudna说。

为了了解如何做到这一点,我拜访了麻省理工学院的神经生物学家Guoping Feng,他的实验室正在利用非洲毛猴用CRISPR技术创建人类大脑疾病的精确模型。为了创建这个模型,Feng将编辑胚胎的DNA,然后将胚胎移植到雌性非洲毛猴体内,最终分娩出小猴子。Feng想要改变的一个基因是SHANK3。这个基因与神经沟通有关,如果这个基因在童年时期受到损害,就会引起孤独症。

Feng说,在有CRISPR技术之前,不可能对灵长类动物的DNA进行精确的改变,但是第一只经过基因改造的猴子去年已经在中国昆明出生了。

但是CRISPR技术也不是十全十美的,而且用这种技术编辑人类胚胎的基因是一种非常随意的行为。要在猴子身上应用CRISPR技术,只需要将一种化学物质注射到受精卵中即可。

Feng说,CRIPSPR导致受精卵中某个基因消失或失去作用的概率是40%左右,所以每次基因编辑操作有效的可能性不大,只有20%多一点。猴子和人一样,有两套基因,分别来自父母双方。有时两套基因都会改变,有时只有一套基因会改变,甚至两套都没有改变。只有一半左右的胚胎会被成功分娩。这些因素加在一起,可能要编辑20个胚胎,才能生出一只具有你想要的基因的猴子。

用猴子做实验对象时,这不是什么大问题,但是如果将同样的技术应用于人类,显示就会构成严重的问题。将CRISPR成分注入人类的胚胎在技术上并不难,但是其可行性却有很大问题。正是由于这个原因,很多科学家都对这个实验嗤之以鼻,认为它是哗众取宠,而不是真正的科学。曾创造出第一只基因改造的小鼠的麻省理工学院生物学家Rudolf Jaenisch也认为这样的尝试“为时过早”。

但是Feng告诉我,他认为改造生殖细胞基因的想法非常好,只不过限于目前的技术,这个想法真正付诸实践还需要10到20年的时间。除了其他问题以外,CRISPR还可能带来意料之外的基因改变和效果。但是Feng说,这样的问题是可以解决的,经过基因改造的胎儿将成功分娩。他说,“对于我来说,这是一种预防。我们很难预测未来,但是降低患病风险的尝试是有可能成功的,也是应该得到支持的。我认为它会成为现实。”

“编辑卵细胞,我们正在尝试”

在波士顿的其他地方,也有一些科学家在尝试用另一种方法改变生殖细胞的基因。这种方法在技术上更加困难,但是可能效果要好得多。它将CRISPR技术与干细胞方面的发现结合了起来。很多人,包括Church的研究中心的科学家,都认为这些人很快将可以在实验室里用干细胞创造出卵子和精子。和胚胎不一样,干细胞可以发育和复制。因此,它们提供了用CRISPR技术创造经过基因改造的后代的更好的途径。具体的方法是:首先,编辑干细胞的基因;第二,将这些基因移植到精子或卵子中;第三,孕育后代。

人类的基因有由父母双方共同提供,但有一小部分线粒体基因完全来自母方。如果母方的这部分基因中存在缺陷,就会将其遗传给下一代。英国的研究人员曾试图借助全新试管授精技术去除母亲卵子中有缺陷的线粒体,从而在更大程度上确保新生儿健康。

OvaScience公司于2014年12月曾召集一些投资者开会。在这次会议期间,去年被评为“世界上最有影响力的100人”之一的Sinclair介绍了一些被他称为“将真正改变世界”的科技发展。他说,未来当人们回首这一刻的时候,会意识到这些发展揭开了“人类控制自己身体”的新篇章,因为它让父母可以决定“什么时候要孩子,怎样要孩子,以及孩子有多么健康”。

OvaScience公司的干细胞技术还不够完美,但是Sinclair预测,培育出具有正常功能的卵细胞,只是时间的问题。他说,一旦这项技术成熟了,患有不孕症的女性就可以产生几百个卵子,有可能形成几百个胚胎。他们运用DNA序列分析这些基因,可以从中选择最健康的婴儿分娩。

改进婴儿的基因也是有可能的。Sinclair告诉投资者,他已经在尝试用基因编辑技术改变卵干细胞中的DNA,这也是Church的实验室正在进行的研究。他说,“我们认为这项新技术也可以应用在对体外受精没兴趣但是想生出更健康的宝宝的人群身上。”他举了亨廷顿舞蹈症的例子。这种疾病是一个会引发大脑出现致命缺陷的基因导致的。Sinclair说,通过基因编辑,可以消除卵细胞中的这种基因缺陷。他说他和OvaScience公司的目标是“在婴儿出生之前纠正这些变异”。

令我惊讶的是,OvaScience公司的发言人Cara Mayfield说,该公司的研究基本上没有没有引起任何关注。2013年12月,该公司甚至宣布,它将投入150万美元与一家叫做Intrexon的公司组建一家合资公司,其研究目标包括对卵干细胞进行基因编辑,以“预防繁殖出有疾病的后代”。

西北大学的Tilly说,他的实验室现在正在尝试用CRISPR技术编辑卵细胞,以消除可能导致遗传疾病的基因。Tilly强调有两块拼图,一块是干细胞,另一块是基因编辑。能够创造出更多的卵干细胞是很重要的,因为只有存在一定规模的可供进行基因改造的卵干细胞,才能在形成卵细胞之前进行DNA序列分析,并剔除有错误的细胞。

Tilly预测,这项点到点的技术——从细胞到干细胞,从干细胞到精子或卵子,然后再到后代——肯定能够应用于动物,但是他不确定接下来是否应该应用于人类的卵细胞。他说,你能不能做是一回事。如果你能做,那么就会出现一些最重要的问题——你要做吗?你为什么想这么做?你的目的是什么?技术是否可行是科学问题,而这些更大的问题则是社会问题。

“改进人类,还是实验人类?”

如果生殖细胞基因改造成为医学实践的一部分,可能会给人类的福祉带来巨大的变化,会影响人类的寿命、身份和经济产出。但是这也会带来伦理上的两难和社会挑战。如果只有最富裕的人才能承担得起基因改进的技术该怎么办呢?在美国,体外受精的成本大约是20000美元,而基因检测、捐赠卵子或代孕母亲的价格则高达10万美元。

还有些人认为,这个想法的缺点在于它没有医学上的理由。斯坦福大学的法学教授、伦理学家Hank Greely说,“支持这项技术的人并不能真正说出它的好处”。Greely说,问题在于,我们已经可以检测体外受精胚胎的DNA并从中选取最健康的一个了,这个成本只有4000美元。例如,一个患亨廷顿舞蹈症的男士,可以用他的精子使其伴侣的十几个卵子受精。其中一半的胚胎不会患亨廷顿舞蹈症,可以用来受孕。

实际上,有些人之所以执着于生殖细胞基因改造,是受了一些错误观点的蛊惑。加州一家生物技术公司的首席执行官Edward Lanphier说,“我们认为进行生殖细胞基因改是为了预防疾病,但是实际上不是。这样做并没有医学上的理由。人们会说,我不想要这样的孩子,不想要那样的孩子,这是一种完全错误的观点,这项技术会并用于一些令人无法接受的领域。”

批评者提出了很多担心。孩子将被用来做实验。父母将受到体外受精诊所的广告的影响。生殖细胞基因改造将导致“主动的优生”,鼓励所谓优质基因的传播。而将会影响到还没有出生的人,不管他们是否同意这样做。美国医学学会认为,不应该在现在进行生殖细胞基因改造,因为这会影响后代的福利,可能会导致不可预料的、不可逆的结果。

还有些人预测,可以识别出那些很难反对的医学应用。一对夫妻可能同时存在几个基因疾病,找不到适合孕育的胚胎。治疗不育症也是可行的应用。有些男性不产生精子,出现这种病症的一个原因就是基因缺陷,Y染色体中的某个区域的六百万个DNA字母中有一个缺失了。澳大利亚的年轻医生Werner Neuhaussser说,将基因改造用于这样的疾病是有可能的。

Church告诉我,推动一切的是CRISPR技术“不可思议的独特性”。虽然人们还没有发现所有的细节,但是他认为这项技术可以改变DNA中的字母,而基本上没有副作用。他说,这使得人们忍不住诱惑而去使用它。Church说,他的实验室不是要制造或编辑人类的胚胎,他说这“不是我们的风格”。

Church的风格是让人类更强大。他正在宣传CRISPR技术不仅可以用来消灭与基因有关的疾病。在热衷了解人类进化的下一步的“超人主义者”举行的集会上,Church介绍了10个基因发生的自然变异,如果人们出生的时候,就具备这样的基因变异,就会具有特殊的体质或对疾病的抵抗力。有一种基因变异会极大地降低心脏病的风险,还有一种基因变异使人不会患痴呆症,在老年的时候仍然保持敏锐。

Church认为,CRISPR技术可以给人们有利的基因变异,使DNA编辑起到疫苗的作用,预防一些常见的疾病。虽然Church说,这样的技术只会应用在同意使用的成年人身上,但是他显然认为,这样的干预越早进行越好。

Church倾向于回避对婴儿进行基因改造的问题。但是最终,他的建议是:进行防护性的基因增强。他说,“越早干预,预防的效果越好。如果我们能够非常廉价、安全、可预测地实施这项技术,那当然应该实施。”

有些人认为,我们不应该错过改进物种的机会。“人类的基因不是完美的,我们应该积极支持这项技术,”曼彻斯特大学的生物伦理学家John Harris说。美国公众似乎也不是特别反对这样的想法。在2014年8月进行的一项调查中,有46%的成年人支持对婴儿进行基因改造,以降低患重病的风险。(这项调查还发现,有83%的人说,如果这样可以是为了使婴儿更聪明,那就是对“医学的过度利用”。)

还有些人说,提高智商也是我们应该考虑的应用。牛津大学的哲学家Nick Bostrom也在考虑人类是否能够应用生殖技术来改进人类的智力。虽然我们现在还不知道基因究竟是如何影响智商的,而且有太多的相关基因可以被轻易改变,但是这种高科技的优生方法的前景似乎并不算盲目的投机行为。

如果每个人都能变得聪明一点会怎么样呢?如果只有部分人能变得聪明,会怎么样呢?甚至只有少数“超强的”个体可能通过他们的创造力和发现来改变世界,又会怎么样呢?根据Bodstrom的观点,基因改进和气候变化或国家的长期经济规划一样重要,“因为人类解决问题的能力关系到我们所面临的每一个问题”。

对于某些科学家来说,基因和生物技术爆发性的进步意味着,生殖细胞基因改造是不可避免的。当然,安全问题是最重要的。在对一个会叫“妈妈”的婴儿进行基因改造之前,必须在大鼠、兔子,可能还包括猴子身上进行实验,也确保他们都能是正常的。但是最终,如果好处超过了风险,医学界就会抓住这个机会。Neuhausser说,“体外受精技术刚出现的时候也是这样的。我们一直都不真正知道,体外受精出生的孩子在40岁或50岁的时候是否会健康。但是有些人不得不冒这样的风险。”

“将基因技术重新装回瓶子里去”

2015年1月,20多位科学家、伦理学家和法律专家来到了加州的Napa谷,在葡萄园里度假。他们是发现了如何用CRISPR技术编辑基因的伯克利科学家Doudna召集来的。她已经意识到,也开始担忧,有些科学家会迫不及待地用这种方法来对生殖细胞进行基因改造。现在她想知道,他们是否可以停止。

Doudna说,“作为科学家,我们都知道CRISPR技术非常强大。但是事情都有两面性。我们必须确保它能够得到谨慎的应用。在应用于人类生殖细胞编辑的时候尤其要注意。”

在1975年的Asilomar会议上,生物学家就如何安全地处理重组的DNA达成了共识。那么在Napa的这次聚会中,是否也应该就生殖细胞基因改造达成一项共识呢?Doudna希望如此,但是要在当时那几天就达成这样的共识似乎不可能。现在,全球有几百万人在进行生物技术研究。没有一个权威能够为科学代言,也没有一种简单的方法,将基因技术重新装回瓶子里去。Doudna说,她希望至少美国的科学家可以达成共识,暂停生殖细胞基因改造研究。参加这次聚会的某些人说,他们将签署一份声明,阐明他们的共识,并在重要的科学期刊上发表。Doudna说,她希望如果美国的科学家能够签署这样一份联合声明,将可以影响世界其他地区的研究者暂停他们的研究工作。

Doudna认为,不仅应该暂停关于改造胚胎的研究,还应该暂停利用CRISPR技术改变人类精子和卵子的研究。她说,“我认为这样的实验是不恰当的。我觉得现在需要的研究是了解这种技术的安全性、有效性和有关分娩的知识。我认为可以在人类以外的动物身上进行这样的实验。”

并不是每个人都认为生殖细胞基因改造如此值得担忧,也不认为应该停止这样的实验。Greely提出,在美国,已经有一些规定禁止实验室对婴儿的基因进行改造。他说,“我不想以安全为借口颁布禁令”。但是Greely也说,他同意签署Doudna提出的那份声明,它代表的是这个群体的共识。

随着新闻媒体开始宣传生殖细胞基因改造的实验,有些使用CRISPR技术的生物技术公司意识到,它们必须要表明立场了。Intellia Therapeutics公司去年筹集了1500万美元准备开发将CRISPR技术作为一种基因疗法应用于承认和儿童。该公司的首席执行官Nessan Bermingham说,生殖细胞基因改造不是商业探测器。他说,他的公司可以利用自己的专利阻止其他人将这项技术商业化。

Bermingham说,他从来没想过,自己这么快就要就婴儿的基因改造问题表明立场。改写人类的遗传特征一直是一种技术上的可能性,现在突然变成了现实。但是人类不是一直想了解和控制人类创造的过程吗?

Doudna说,她也在考虑这个问题。“它直指我们作为人类的核心,它让我们想问一问,人类是否应该运用这样的力量。这里面有道德和伦理问题,但是一个首先的问题是要理解,该走人类的生殖细胞基因,就是在改变人类的进化。”她认为因为停止这样的研究,其中一个原因就是给科学家一个计划,用更多的时间来解释,他们下一步可能会做什么。她说,“大多数公众都不知道即将发生的是什么。”

(作者:Antonio Regalado;via technologyreview)

科技部副部长徐南平表示,2003年颁布的《人胚胎干细胞研究伦理指导原则》规定,可以以研究为目的,对人体胚胎实施基因编辑和修饰,但体外培养期限自受精或者核移植开始不得超过14天。而本次“基因编辑婴儿”如果确认已出生,属于被明令禁止的,将按照中国有关法律和条例进行处理。

南方科技大学副教授贺建奎在第二届人类基因组编辑峰会召开前一天(11月26日)宣布:一对基因编辑婴儿于2018年11月在中国健康诞生。

这是一对双胞胎姐妹——露露和娜娜,她们在胚胎形成时经过基因剪刀CRISPR/Cas9对其生殖细胞核中一个基因(CCR5)进行了编辑修改,使得她们出生后即能天然抵抗艾滋病。这是世界首例免疫艾滋病的基因编辑婴儿。

自从该消息发布后,引起了相当大的风波。不说国际上如何反映,就是国内也是反对声一片。有122个科学家联名信明确反对该项研究;南方科技大学直接否认贺建奎是该校副教授,指出已经从该校停薪留职。

而所有信息明确指向的合作医院——深圳和美妇儿科医院直接否认,甚至表示双胞胎也不是该院出生的。随后,广东省卫生健康委员会表示,针对这一大众关注的热点事件,省卫健委已组织力量展开调查,并将及时向社会公布调查结果。

2018年11月26日,南方科技大学副教授贺建奎宣布一对名为露露和娜娜的基因编辑婴儿于11月在中国健康诞生,由于这对双胞胎的一个基因(CCR5)经过修改,她们出生后即能天然抵抗艾滋病病毒HIV。这一消息迅速激起轩然大波,震动了世界。

2018年11月26日,国家卫健委回应"基因编辑婴儿"事件,依法依规处理。11月27日,科技部副部长徐南平表示,本次“基因编辑婴儿”如果确认已出生,属于被明令禁止的,将按照中国有关法律和条例进行处理。

中国科协生命科学学会联合体发表声明,坚决反对有违科学精神和伦理道德的所谓科学研究与生物技术应用。11月28日,国家卫生健康委员会、科学技术部发布了关于“免疫艾滋病基因编辑婴儿”有关信息的回应:对违法违规行为坚决予以查处。

2019年1月21日,从广东省“基因编辑婴儿事件”调查组获悉,现已初步查明,该事件系南方科技大学副教授贺建奎为追逐个人名利,自筹资金,蓄意逃避监管,私自组织有关人员,实施国家明令禁止的以生殖为目的的人类胚胎基因编辑活动。

12月30日,“基因编辑婴儿”案在深圳市南山区人民法院一审公开宣判。贺建奎、张仁礼、覃金洲等3名被告人因共同非法实施以生殖为目的的人类胚胎基因编辑和生殖医疗活动,构成非法行医罪,分别被依法追究刑事责任。

参考资料来源:百度百科-基因编辑婴儿事件

反人类罪即在战前或战时,对平民施行谋杀、灭绝、奴役、放逐及其他任何非人道行为;或基于政治的、种族的或宗教的理由,而为执行或有关本法庭管辖权内之任何犯罪而作出的迫害行为,至于其是否违反犯罪的法律则在所不问。是一种能让整个国际社会都密切关注的重大国际性犯罪。1920年8月10日,协约国在签署“对土耳其和约”时首次提出反人类罪这一法律概念。但最早确立这一罪行的国际文件则是《欧洲国际军事法庭宪章》。使用危害人类罪的初次适用,是在第二次世界大战后对战犯的审判;当时,危害人类罪被列为丙类犯罪。“反人类罪”是指握有权力资源的人出于政治、军事或经济目的,以国家、种族、宗教或某种意识形态为界,对他们进行肉体上消灭或政治上虐待的暴行。“反人类罪”的提出是基于这样的观念:人类是一个平等的、和睦共处的大家庭,人们不分国家、种族、文化、信仰、阶层、性别都应享有公平、自由与尊严的基本人权, 是人类文明突破狭隘的国家主义、民族主义偏见的发展成果。其量刑等同战争罪。案例据来自伊拉克的消息,伊拉克前总统萨达姆的两个兄弟被判处死刑,化学阿里被判处15年徒刑。英国广播公司(BBC)报道说,伊拉克最高刑事法庭2009年03月12日以犯战争罪和反人类罪等判处前总统萨达姆的两个同母异父的兄弟死刑,他们分别是瓦特班和萨巴维。瓦特班在萨达姆时期曾先后担任国内安全部长、伊拉克军方情报部门主管和内政部长等;萨巴维曾任伊拉克警察总监和情报局长等。报道还表示,伊拉克前国防部长马吉德(被外界普遍称为化学阿里)和前副总理阿齐兹被指控犯反人类罪分别被判处15年徒刑,但马吉德对法庭的指控表示否认。综合外国媒体报道,海牙国际刑事法庭2011年5月16日发表声明称,该法庭的检察官柳斯·莫雷诺-奥坎波当天申请以谋杀和迫害的罪名对利比亚三名高级领导人下达逮捕令,三人分别为利比亚领导人卡扎菲、卡扎菲的儿子赛义夫以及利比亚间谍部门首长塞努西。莫雷诺-奥坎波表示,上述三人在镇压利比亚反对派武装的行动中策划和参与了对平民的非法袭击,犯下了反人类的罪行。据悉,联合国安理会2月通过的第1970号决议决定由国际刑事法庭调查利比亚国内形势。莫雷诺-奥坎波2月4日向安理会汇报了相关调查和起诉工作。国际刑事法庭的法官将对莫雷诺-奥坎波提交的证据进行评估,然后才能决定是否发逮捕令。2011年6月27日,国际刑事法院宣布向卡扎菲等三人正式发布国际通缉令。国际刑事法院指,卡扎菲从今2011年2月中旬开始,对其反对者犯下“反人类罪”。国际刑事法院2009年3月4日以战争罪和反人类罪对苏丹总统巴希尔发出逮捕令。这是国际刑事法院首次对一个国家的现任元首发布逮捕令,无先例可循。逮捕令发出后,引起国际社会激烈争议,特别是触动了苏丹国民的敏感神经。而逮捕令如何执行也是问题。2002年2月12日,前南国际刑庭正式开庭审理米洛舍维奇一案。他被指控犯有包括战争罪、反人类罪和种族屠杀罪在内的60多项罪行。但米洛舍维奇一直否认对他的所有指控,并宣称前南国际刑庭是非法机构。构成特征在国际刑事法院预备委员会讨论《犯罪要件案文》时,危害人类罪的行为要件曾引起很大争议。由于部分国家极力主张降低危害人类罪的门槛,各国进行了艰难磋商。最为突出的分歧是关于危害人类罪犯罪要件的“导言”部分,由于“导言”是解释和适用罪行要件的指导原则,它的内容将对已达成妥协的具体罪行要件产生决定性的影响。因此,各国在讨论这部分内容时都非常谨慎,在关键问题上不愿作出任何妥协,谈判一度陷入僵持,直至会议结束的前一天,工作组才最终就“导言”内容形成协商一致。在工作组通过案文之前,我国发表声明,阐述了我国对该文件“导言”、奴役罪、强迫绝育罪、强迫失踪罪等内容所持的保留态度。特别是危害人类罪涉及许多人权法内容,引起了广泛关注。由于各国对构成该罪的背景要求及各项具体罪行的要件存在很大分歧,谈判一度陷于僵局。在谈判中,埃及等国家主张应就构成危害人类罪的行为严重程度予以详细规定;一些欧洲国家则力图扩大该罪的适用范围。我国还就各项具体罪行发表了意见,我国代表团强调,国际刑事法院管辖的危害人类罪是最严重的国际罪行之一,如其罪行要件使一些违反人权的行为也成为危害人类罪,那么国际刑事法院将被人权投诉所淹没,而无法行使其惩治最严重国际犯罪的职能。为能在本次会议完成一读,各国同意暂时把争议的内容写入脚注,但强调无论是案文还是脚注都需进一步讨论。2000年11月国际刑事法院预备委员会拟订的《犯罪要件》关于危害人类罪导言部分指出,鉴于该罪涉及国际刑法,根据《国际刑事法院规约》第22条的规定,必须对其规定作严格解释;在这方面,应考虑到《国际刑事法院规约》第7条界定的危害人类罪系整个国际社会关注的一些最严重犯罪,应当追究其个人刑事责任,而且所涉行为应当是世界各大法系承认的普遍适用国际法所不容许的行为。危害人类罪的构成特征主要体现客观行为上,除该罪定义所反映的特征之外,《国际刑事法院规约》第7条列举了11项危害人类的犯罪行为。危害人类罪的客观特征具体表现为,行为人针对任何平民人口进行的一系列攻击行为。所谓“针对任何平民人口进行的攻击”,是指根据国家或组织攻击平民人口的政策,或为了推行这种政策,针对任何平民人口多次实施的攻击行为。其中“攻击平民人口的政策”是指国家或组织积极推动或鼓励这种攻击平民人口的行为。 至于这些攻击行为要求行为人必须是参加且明知,但不一定要求证明行为人知道攻击的所有特性,或国家或组织的计划或政策的详情。危害人类罪要求每项危害人类罪的最后二项要件描述行为发生时的必要背景情况,即“实施的行为属于广泛或有系统地针对平民人口进行的攻击的一部分。行为人知道或有意使该行为属于广泛或有系统地针对平民人口进行的攻击的一部分。”这些要件明确指出了必须是参加且明知系广泛或有系统地针对平民人口进行的攻击。但最后一项要件不应被解释为必须证明行为人知道攻击的所有特性,或国家或组织的计划或政策的详情。如果广泛或有系统地针对平民人口进行攻击为新出现的情况,最后一项要件的故意要素是指,行为人如果有意推行这种攻击,即具备这一心理要件的该当性。这些行为不必构成军事攻击。以平民人口为攻击对象的政策一般由国家或组织行动实施。在特殊情况下,这种政策的实施方式可以是故意不采取行动,刻意以此助长这种攻击。不能仅以缺乏政府或组织的行动推断存在这种政策。危害人类罪行具有普遍性和系统性。在危害人类罪定义中已经明确指出,危害人类罪行是一种“广泛或有系统地……攻击行为”,任何构成危害人类罪的具体实施行为都具备这种特性。所谓“广泛”一词概指攻击属于大规模的性质,针对大批的个人。“有系统(或称有计划)”一词概指攻击构成一项政策或协调的计划、或在一段时间内一再采取的手段,或者这种政策、计划或手段的一部分,或者与其一致,或是为了促进这种政策、计划或手段。 1996年《罪行法典草案》中的危害人类罪定义条款开始确定了两个一般性条件,包括危害人类罪行必须满足任何一种限定的禁止行为。首先需要的行为条件是“有计划或大规模地实施”,这个条件由两个选择条件构成。第一个选择条件是不人道行为意味着依照预想计划或政策有系统地实施。这个计划或政策的执行可以导致多次或持续不人道犯罪行为,这个条件的延伸不包括任何没有实施主要计划或政策的任意行为。《纽伦堡宪章》不包含这种需要,纽伦堡法庭仍然没有强调非人道行为的实施视为恐怖政策的部分,并“在许多案例中……有组织和有系统”中考虑这种行为是否构成危害人类罪。第二个选择条件是大规模地实施不人道行为意味着直接侵害大量的受害者。这个条件不包括行为人自己主动单独实施的不人道行为和直接针对一个受害者实施的非人道行为。《纽伦堡宪章》亦不包含这种需要,在不人道行为的考虑中,纽伦堡法庭仍然进一步强调恐怖政策“当然涉及一种大规模”视为可能发生的危害人类罪行。1996年《罪行法典草案》原文使用的“大量”一词在一读时被采用显示了大量受害者的需要,在正式文本中非常广泛地包括了各种情形的大量受害者,所以“大量”一词由“大规模”一词所取代,例如,作为一系列非人道行为结果或一种特别严重不人道行为结果的积累结果。在两个需要选择的条件中阐明最初的条件,因此,如果满足任何一种情形,该行为就可以构成一种危害人类罪行。其次的条件需要是“由某个政府或任何组织或团体煽动或指挥”的行为,必须是可能来自某个政府或某个组织或团体的煽动或指挥。这种选择条款有意不包括个人缺乏来自任何一个政府、团体或组织任何煽动或指挥依照自己的犯罪计划而实施非人道行为的情形。这种单独类型涉及某个人的部分犯罪行为不应构成危害人类罪行。在1996年《罪行法典草案》第18条中设想有关独自实施非人道行为的单纯个人行为将非常困难。某个政府或任何组织或团体的煽动或指挥,可能或不可能加入某个政府,获得十足的行为空间并构成一种可归咎的危害人类罪行秘密个人或某个国家的因素。 实际上,1996年《罪行法典草案》没有规定任何有关这种集体犯罪的责任,《国际刑事法院规约》没有在条款中涉及这个条件。某些孤立的罪行本身并无资格称为危害人类罪行,因为这些行为必须是一个迫害或歧视政策的组成部分。此外,这些行为必须以一种有系统或大规模行动的方式来实施,行为人加害受保护团体的系统化过程是认定危害人类罪的关键。由于行为人出于一个共同计划,而且具备上述因素,他们对付受害人无须采取同样的手段或行为,所以本罪受害人和加害人的数目都很大。应该指出,在法律和秩序崩溃以后而引发的一系列犯罪并不属于危害人类罪行。然而,法律和秩序的崩溃可能是实施危害人类行为的一种预谋手段,或者是一种以掩盖真实面目而实施行为的

什么是基因组编辑技术参考文献

排放冷却是对流冷却的另一种。与再生冷却不同,用于排放冷却的冷却剂对推力室冷却吸热后不进入燃烧室参与燃烧,而是排放出去。直接排放冷却剂会降低推力室比冲,因此需要尽可能减少用于排放冷却的冷却剂流量,同时只在受热相对不严重的喷管出口段采用排放冷却。还有一种是辐射冷却,其热流由燃烧产物传给推力室,再由推力室室壁想周围空间辐射散热。辐射冷却的特点是简单、结构质量小。主要应用于大喷管的延伸段和采用耐高温材料的小推力发动机推力室。在组织推力室内冷却时,是通过在推力室内壁表面建立温度相对较低的液体或气体保护层,以减少传给推力室室壁的热流,降低壁面温度,实现冷却。内冷却主要分为头部组织的内冷却(屏蔽冷却)、膜冷却和发汗冷却三种方法。推力室采用内冷却措施后,由于需要降低保护层的温度,所以燃烧室壁面附近的混合比不同于中心区域的最佳混合比(多数情况下采用富燃料的近壁层),造成混合比沿燃烧室横截面分布不均匀,使燃烧效率有一定程度的降低。膜冷却与屏蔽冷却类似,是通过在内壁面附近建立均匀、稳定的冷却液膜或气膜保护层,对推力室内壁进行冷却,只是用于建立保护层的冷却剂不是喷注器喷入的,而是通过专门的冷却带供入。冷却带一般布置在燃烧室或喷管收敛段的一个横截面上。沿燃烧室长度方向上可以有若干条冷却带。为提高膜的稳定性,冷却剂常常经各冷却带上的缝隙或小孔流入采用发汗冷却时,推力室内壁或部分内壁由多孔材料制成,其孔径为数十微米。多孔材料通常用金属粉末烧结而成,或用金属网压制而成。此情况下,尽可能使材料中的微孔分布均匀,是单位面积上的孔数增多。液体冷却剂渗入内壁,建立起保护膜,使传给壁的热流密度下降。当用于发汗冷却的液体冷却剂流量高于某一临界值,在推力室内壁附近形成的是液膜。当冷却剂流量低于临界值流量时,内壁温度会高于当前压力下的冷却剂沸点,部分或全部冷却剂蒸发,形成气膜。除了以上热防护外,还有其他热防护方法如:烧蚀冷却、隔热冷却、热熔式冷却以及室壁的复合防护等。3 高焓气体发生器热防护方案综合上述方法结合实际情况,便得到高焓气体发生器的热防护方法。高焓气体发生器的燃烧室与液体火箭发动机的不同,省去前面的推力室部分,使得其结构更简单而有效。那么,所涉及到的热防护即为对燃烧室室壁的热防护部分。由于燃料进入燃烧室内迅速分解并放出大量

基因编辑又称基因组编辑或基因组工程是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。

嗨~来看点更专业的回答吧 ♪(・ω・)ノ

CRISPR/Cas基因编辑系统

CRISPR/Cas(Clustered Regularly Interspaced Short Palindromic Repeats/Cas)系统是目前被广泛运用的基因编辑系统,其原理是由CRISPR转录产生的gRNA介导Cas核酸酶靶向目标序列,对序列进行切割。

CRISPR/Cas9基因编辑示意图

(图源:Wellcome Trust Sanger Institute,Sanger)

CRISPR/Cas基因敲除

CRISPR/Cas9系统中sgRNA(smallguideRNA)识别并结合目标基因的靶向序列,引导Cas9对结合位点进行剪切,产生DNA双链断裂(double-strandbreak,DSB),机体自身通过非同源重组(non-homologousendjoining,NHEJ)的方式修复DSB,参与修复的蛋白经常会在DNA末端插入或删除几个碱基,修复后的基因由于产生突变而导致功能丧失,从而实现机体内的基因敲除。应用:基因敲除细胞系建立、基因敲除建立动物疾病模型。技术优势:相较于在mRNA水平“敲低”目的基因的RNAi而言,CRISPR/Cas9系统造成基因序列的缺失,从而能完全沉默(即敲除)目的基因。

CRISPR/Cas基因敲入

CRISPR/Cas9系统中sgRNA(smallguideRNA)识别并结合目标基因的靶向序列,引导Cas9对结合位点进行剪切,产生DNA双链断裂(double-strandbreak,DSB),通过细胞内的同源重组(homologousrecombination,HR)修复方式,将外源供体DNA定点导入至基因组的靶位点中,从而实现基因敲入。应用:基因片段敲入细胞系建立、基因单碱基突变细胞系建立、基因敲入建立动物疾病模型。技术优势:操作简易、效率高、具有广谱性且提供BSL-1和BSL-2病毒注射及实验操作平台。

CRISPR/dCas9调控内源基因的转录激活与抑制

CRISPR-dCas9系统即是dCas9与转录激活因子(如VP64)或转录抑制因子(如KRAB)融合后,结合sgRNA能促进或抑制目的基因的表达。应用:目的基因在内源环境中过表达、诱导iPSC、抑制表达等。技术优势:操作简易、效率高、具有广谱性且提供BSL-1和BSL-2病毒注射及实验操作平台,同时可与RNAi联合作用。

==========================

如果您正在研究或者学习神经科学,生物病毒,基因治疗等方向,或是正在使用各类工具病毒做科研实验,可以百度搜索 布林凯斯braincase,官网上有更详细的案例分析和专业解读哦~

基因编辑技术不断发展,到现在已发展到第三代基因编辑技术。第三代基因技术CRISPR/Cas克服了传统基因操作的周期长、效率低、应用窄等缺点。作为一种最新涌现的基因组编辑工具,CRISPR/Cas能够完成RNA导向的DNA识别以及编辑。通过一段序列特异性向导RNA分子(sequence- specific guide RNA)引导核酸内切酶到靶序列处,从而完成基因组的精确编辑,因其操作简单、成本低、高效率,近几年成为炙手可热的基因编辑手段,目前已广泛用于模式生物研究,医疗,植物作物,农业畜牧等领域。

CRISPR/Cas9的出现给了科研人员无限想象的可能,基于CRISPR/Cas9的技术很快就被广泛应用于全世界各个实验室中,这里我们将主要介绍最常用的几种应用。

早期,科研人员通过同源重组(HR)介导的基因打靶技术来实现基因编辑,但因效率太低,极大地限制了其应用。为了克服这一难题,一系列通过核酸内切酶介导的基因编辑技术被开发出来,通过这些核酸内切酶切割特定的基因组序列,借助细胞自身修复体系如非同源末端连接或同源重组修复方式,并由此达到改变基因组序列的目的,锌指核酸内切酶(ZFNs)、类转录激活因子效应物核酸酶(TALENs)以及sgRNA介导的Cas9核酸内切酶正是基于此原理工作的。

锌指核酸内切酶(ZFNs)和类转录激活因子效应物核酸酶(TALENs)均可通过蛋白-DNA相互作用识别基因组上的特定DNA序列并完成特定位点的切割,但是它们因效率低下、可选潜在位点少、成本高等原因极大地限制了它们的应用,直到CRISPR/Cas9系统的出现,科研人员才找到了一种成本低、效率高、简单易用的基因编辑工具。

CRISPR/Cas9出现之后,科研人员最先想到的便是将其运用到基因编辑上了,根据目标基因的外显子序列设计single guide RNA(sgRNA)并与含有Cas9编码序列的质粒一起转入细胞,sgRNA通过碱基互补配对的原则引导Cas9蛋白靶向目标DNA序列,Cas9蛋白会在该位点切割DNA,引发DNA双链断裂(DSB),此时细胞通过非同源末端连接修复(NHEJ)完成DNA的自身修复,

因修复过程中常常发生碱基的添加和丢失,而最终导致基因的移码突变从而达到基因敲除的目的,或者针对目的基因的上下游序列各设计一个sgRNA,从而引发该基因上下游同时发生DSB,再通过DNA损伤修复机制将断裂的上下游两端的DNA连接在一起,引发DNA片段缺失,从而达到基因敲除的目的。如果在此基础上为细胞引入一个修复的模板质粒,细胞就会以此模板进行同源重组修复,如果引入的修复模板是一个想要插入的基因,便可在特定的位置进行基因敲入了。

随着人们对Cas9研究的不断深入,Cas9发挥功能的结构基础也渐渐明确,在Cas9发挥切割DNA的功能时,它的两个结构域发挥着重要作用,分别是RuvC和HNH,其中HNH结构负责sgRNA互补链的切割,切割的位点位于PAM的5'端的第三个碱基外侧,RuvC结构域负责非互补链的切割,切割位点是在PAM上游的3-8碱基之间,当将这二者同时突变失活,便产生了失去DNA切割活性的Cas9蛋白了(dCas9),dCas9虽然失去了对DNA的切割能力,但依旧可以在sgRNA的引导下到达指定的DNA序列处,这是基于sgRNA–dCas9复合体的这一特征,若在dCas9上融合不同功能的结构域,便可在特定的DNA区域完成不同的修饰了,这便形成了基于CRISPR/dCas9的工具包了。

脑洞大开的科学家利用dCas9蛋白,开发出各种用途的工具,可谓是把CRISPR/dCas9利用得淋漓尽致,这里我们举几个简单的例子如研究人员针对目标基因的启动子序列设计sgRNA,使得sgRNA–dCas9复合体靶向结合到目标基因的启动子上,因dCas9蛋白带来的空间位阻可干扰转录因子的结合,从而引发在转录水平上的干扰基因表达的效果,而在此基础上为了达到更佳的干扰效果,一些能够引发基因转录阻遏的结构域也被融合到dCas9蛋白上,如KRAB(Krüppel-associated box)等。

既然可以通过CRISPR/dCas9实现基因表达的干扰,那是不是也可以通过CRISPR/dCas9实现激活基因表达呢?答案是肯定的。科研人员通过向dCas9上融合vp64(四个串联的vp16)、p65AD(p65 activation domain)等促进促进基因转录的结构域,实现基因的内源性激活,在经过各种优化之后,比如由vp64、p65AD和VPR(Epstein-Barr病毒R反式激活因子Rta47)组成的三联结构域(dCas9–VPR)就可以实现很高水平的内源性激活基因表达的效果了。

通过基于CRISPR/dCas9的基因表达干扰和内源性激活工具的建立,使得科研人员在进行诸如基因功能研究的工作时有了更为简单、高效且低成本的研究工具。这很大程度上为科研人员节约了时间和成本。

表观遗传研究是近些年来非常火热的领域,DNA甲基化、组蛋白乙酰化等都在生物体中发挥着重要的生物学功能,而CRISPR/dCas9在表观遗传的研究中也成为了十分强大的工具。比如CRISPR/dCas9介导的靶向DNA甲基化修饰,我们知道在DNA甲基化过程中DNA甲基转移酶(DNA methytransferases,DNMTs)起着关键的催化作用,而且大部分DNA甲基化都发生在CpG岛,

因此研究人员尝试着将DNMTs的催化结构域融合到dCas9上形成dCas9-Dnmt3a3L,并通过sgRNA的引导靶向目标DNA序列的CpG附近催化其甲基化,以实现DNA甲基化的定点编辑。相似地,研究人员将在DNA去甲基化过程中起关键催化作用的TET1蛋白的催化结构域融合到dCas9上形成dCas9-TET1,同样的通过sgRNA的引导靶向目标DNA序列的CpG附近,可以实现去甲基化修饰。

再如CRISPR/dCas9介导的靶向组蛋白修饰,与靶向DNA甲基化修饰相似,一些和组蛋白修饰相关的酶包括组蛋白去甲基化酶(LSD1/KDM1A)、组蛋白乙酰转移酶以及组蛋白甲基转移酶等也被融合到dCas9蛋白上,以实现靶向组蛋白修饰。

除以上的应用外,CRISPR/dCas9还被用于其他多个领域,比如将EGFP融合到dCas9上,通过sgRNA靶向特定DNA序列实现基因组成像。此外,还有研究人员开发出基于CRISPR/dCas9的enChIP技术,以来探测特定基因组区域上的DNA-蛋白质相互作用,通过sgRNA靶向特定基因组基因座的标记dCas9的抗体免疫沉淀,之后通过蛋白质谱(enChIP-MS),鉴定与之特异性相互作用的蛋白质。这些工具的开发都极大地帮助了科研人员,使得之前无法实现的操作成为可能,推动了生命科学的快速发展。

以往基于ZFN或TALENs的基因组编辑技术,需要针对DNA靶序列设计蛋白质,而CRISPR技术仅需要根据不同的靶序列合成相应的80nt左右的sgRNA来引导Cas9蛋白对序列进行修饰,这就实现了基因编辑技术的高通量应用。

CRISPR全基因组筛选技术可用于必需基因及药物靶标基因鉴定。多伦多大学Jason Moffa研究组建立了覆盖全基因组gRNA库并在5个细胞系中逐个敲除了万个基因,最后鉴定出在不同细胞系间保守的1580个必需基因构成的“core fitness genes”。

同样,美国达纳-法伯癌症研究所W. Nick Haining研究组通过CRISPR/Cas9系统性地敲除了黑色素瘤细胞的2368个基因,发现ptpn2基因缺失会使这些癌细胞对PD-1阻断更加敏感。华盛顿大学医学院Michael Diamond研究组利用CRISPR/Cas9鉴定在宿主细胞中坚定了黄病毒感染所绝对必需的9个基因,其中spcs1基因缺失时,不仅降低黄病毒感染率,而且对细胞也不产生副作用,这将是一个潜在的黄病毒药物靶标。

CRISPR/Cas9作为新一代基因编辑技术,同样可被应用于建立疾病模型及培育供体器官。基因治疗可实现在患者自身细胞中纠正遗传缺陷,并结合其他生物学技术在体外培育出组织特异性的“类器官”,对于疾病建模、药物筛查及临床治疗等方面研究有极大意义。CRISPR介导的基因组编辑技术可以直接应用于非人类哺乳动物的疾病模型建立,将更有利于疾病致病机理和治愈研究。

此外,CRISPR技术还可应用于大型动物的基因编辑以研究免疫排斥及跨物种的疾病传染,从而解决异种移植器官来源的瓶颈,猪被认为是人体异种器官来源的首选动物,而目前猪器官用于人类的主要障碍为免疫排斥反应,及猪内源性逆转录病毒(Porcine endogenous retroviruses, PERVs)带来的医疗风险问题。eGenesis公司杨璐菡博士与哈佛大学George Church教授利用CRISPR进行基因改造一步让62个PERV pol 基因关闭,因而将来自PERV的传染风险降低了三个数量级,成功培育出不含PERVs的猪品系,作为安全有效的异种移植器官来源,这些研究让猪成为病人的器官来源更有前景。

基因编辑技术可以准确地改造人类基因,达到基因治疗效果。中国科学院生物化学与细胞生物学研究所李劲松研究组通过在小鼠胚胎中注射CRISPR/Cas9纠正白内障小鼠模型中的遗传缺陷,所产生的后代是可育的并能将修正后的等位基因传递给它们的后代。杜氏肌营养不良(DMD)是一种罕见的肌肉萎缩症,也是最常见的致命性遗传病之一,是由肌营养不良蛋白dystrophin基因突变引起。杜克大学Charles Gersbach研究组应用CRISPR/Cas9在DMD小鼠中将dystrophin基因突变的23外显子剪切,而合成了一个截短的但功能很强的抗肌萎缩蛋白,这是生物学家“首次成功地利用CRISPR基因编辑技术治愈了一只成年活体哺乳动物的遗传疾病”。

► CAR-T治疗简图,图片来自

基因编辑技术联合免疫疗法在肿瘤及HIV/AIDS治疗具有广泛的应用前景。嵌合抗原受体T细胞(Chimeric Antigen Receptor T cell,CAR-T)细胞治疗是非常有前景的肿瘤治疗方法。CAR-T细胞疗法在B细胞恶性血液肿瘤治疗中已经取得硕果。中科院动物研究所王皓毅研究组利用CRISPR/Cas9技术在CAR-T细胞中进行双基因(TCRα subunit constant 和beta-2 microglobulin)或三基因(TRAC,B2M及programmed death-1)敲除。美国斯隆凯特林癌症纪念中心Michel Sadelain研究组发现CRISPR/Cas9技术将CAR基因特异性靶向插入到细胞的TRAC基因座位点,极大增强了T细胞效力,编辑的细胞大大优于传统在急性淋巴细胞白血病小鼠模型中产生CAR-T细胞。

继诺华的Kymriah以及Gilead (kite Pharma)的Yescarta接连上市,CRISPR Therapeutics公司也在应用CRISPR/Cas9基因编辑技术开发同种异体CAR-T候选产品。2016年10月,四川大学华西医院的肿瘤医生卢铀领导的一个团队首次在人体中开展CRISPR试验,从晚期非小细胞肺癌患者体内提取出免疫细胞,再利用CRISPR/Cas9技术剔除细胞中的PD-1基因更有助于激活T细胞去攻击肿瘤细胞,最后将基因编辑过的细胞重新注入患者体内。

微生物种群与人体医学,自然环境息息相关。北卡罗来纳大学Rodolphe Barrangou与Chase L. Beisel合作通过使用基因组靶向CRISPR/Cas9系统可靶向并区分高度密切相关的微生物,并程序性去除细菌菌株,意味着CRISPR/Cas9系统可开发成精细微生物治疗体系来剔除有害致病菌,人类将有可能精确控制微生物群体的组成。以色列特拉维夫大学Udi Qimron将CRISPR系统导入温和噬菌体中在侵染具有抗生素抗性的细菌以消灭此类细菌,CRISPR系统已具有成为新一类抗生素的潜力。Locus BioSciences公司也在开发在噬菌体中开发CRISPR系统以达消灭难辨梭菌的目的。

弗吉尼亚理工大学Zhijian Tu研究组在雄蚊子中进行M因子基因编辑,可以导致雌雄蚊之间的转化或雌蚊的杀戮,从而实现有效的性别分离和有效减少蚊子的数量,也将减少寨卡病毒及疟疾等传播。

基于CRISPR治疗不仅可以应用于根除共生菌或有益菌群的病原体,也可应用于靶向人类病毒,包括HIV-1,疱疹病毒,乳头瘤病毒及乙型肝炎病毒等。具有纯合的32-bp缺失(Δ32)的CC趋化因子受体5型(CCR5)基因的患者对HIV感染具有抗性。因此加利福尼亚大学Yuet Wai Kan在诱导多能干细胞iPSC中利用CRISPR系统引入纯合CCR5Δ32突变后,诱导分化后的单核细胞和巨噬细胞对HIV感染具有抗性。天普大学Kamel Khalili 课题组应用CRISPR/Cas9系统在宿主细胞基因组中精确编辑HIV-1 LTR U3区,从而在将艾滋病病毒从基因组中剔除。

Cas12a (Cpf1)属于CRISPR家族另一核酸内切酶,它也可被gRNA引导并剪切DNA。但是,它不仅可以切割相结合的单链或双链DNA,也剪切其他的DNA。近日,加州大学伯克利分校Jennifer Doudna研究组开发了基于CRISPR的一项新技能——基因侦探(DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR))。利用单链DNA将荧光分子和淬灭分子连接构建成一个报告系统,当CRISPR-Cas12a在gRNA引导下结合到目标DNA并发挥剪切作用时,报告系统中的DNA也被剪切,荧光分子将被解除抑制。此系统在致癌性HPV的人的DNA样品检测HPV16和HPV18变现极佳。

布罗德研究所Feng Zhang研究组开发的基于CRISPR的2代SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing),原理是利用Cas13a被激活后,可以切割除靶序列外其他的RNA的特征,引入了解除荧光分子的抑制。此工具可实现一次性多重核酸检测,可同时检测4种靶标分子,额外添加的Csm6使得这种工具比它的前身具有更高的灵敏度,并将它开发成微型试纸条检测方法,简单明了易操作,已被研究人员成功应用于RNA病毒,如登革热病毒和寨卡病毒,及人体液样本检测。

Broad研究所David R. Liu研究组利用CRISPR/Cas9开发了一种被称为CAMERA(CRISPR-mediated analog multi-event recording apparatus)的记录细胞事件的“黑匣子”他们利用这个系统开发出两种细胞记录系统,在第一种被称为“CAMERA 1”的细胞记录系统中,研究人员利用细菌中质粒的自我复制但又严格控制其自身数量的特征,

将两种彼此之间略有不同的质粒以稳定的比例转化到细菌中,随后在接触到外来药物刺激时,利用CRISPR/Cas9对这两种质粒中的一种进行切割,通过对质粒进行测序并记录两种质粒比例的变化来记录细菌接触外来刺激的时间。另一种细胞记录系统被称为“CAMERA 2”,它利用基于CRISPR/Cas9的碱基编辑系统实现在细胞内特定信号发生时改变遗传序列中的单个碱基,以此实现对诸如感染病毒、接触营养物等刺激的记录。这套技术的出现将很大程度的帮助人们进一步了解细胞的各类生命活动的发生发展规律。

2015 年 4 月,中山大学的黄军利用CRISPR/Cas9介导的基因编辑技术,同源重组修复了胚胎中一个引发地中海贫血β-globin gene (HBB)的突变。

► 图片来自

2016年,广州医科大学的范勇团队在三原核受精卵中,应用基因编辑技术CRISPR受精卵中的基因CCR5进行编辑引入CCR5Δ32纯合突变由于当时脱靶效率问题突出,产生了镶嵌式的受精卵。

2017年8月2日,俄勒冈健康与科学大学胚胎细胞和基因治疗中心Shoukhrat Mitalipov研究组公布了其应用CRISPR在人类胚胎中进行DNA编辑的结果,纠正了突变的MYBPC3基因,其突变会引起心肌肥厚并将年轻运动员猝死。

基因编辑的原理

这主要是通过基因编辑技术进行基因处理,同时对于基因其中的碱基进行改变实现的。

基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。

基因编辑技术指能够让人类对目标基因进行定点“编辑”。基因编辑依赖于经过基因工程改造的核酸酶,也称“分子剪刀”,在基因组中特定位置产生位点特异性双链断裂,诱导生物体通过非同源末端连接或同源重组来修复DSB,因为这个修复过程容易出错,从而导致靶向突变。这种靶向突变就是基因编辑。现在运用最多的基因编辑就是CRISPR/Cas系统,CRISPR全称是Clustered Regularly Interspaced Short Palindromic Repeats(成簇的规律间隔的短回文重复序列),而Cas的全称是CRISPR associated(CRISPR关联)。在CRISPR/Cas系统中,CRISPR/Cas9系统是研究最深入,应用最成熟的一种类别。CRISPR/Cas9是继锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代基因组定点编辑技术。

我之前碰到过类似的问题,总结一下就是,基因编辑的原理的确是基因突变,不是基因重组。基因编辑是比较精确的能对生物体基因组特定目标基因进行修饰(改变几个碱基之类的);转基因技术才是基因重组(将特定的外源目的基因转移到受体生物中)。

  • 索引序列
  • 基因编辑婴儿
  • 编辑基因婴儿论文参考文献
  • 南方科技大学基因编辑婴儿事件
  • 什么是基因组编辑技术参考文献
  • 基因编辑的原理
  • 返回顶部