首页 > 学术论文知识库 > 矩阵秩的论文答辩ppt

矩阵秩的论文答辩ppt

发布时间:

矩阵秩的论文答辩ppt

r(A,b) = r(A) 或 r(A,b) = r(A)+1.

找点文献给你自己看看吧,需要就发邮件给我[1]高朝邦,祝宗山.关于矩阵的秩的等价描述[J].成都大学学报(自然科学版),2006,25(1)从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题.[2]费绍金.用矩阵的秩判断空间中平面与平面、直线与直线及直线与平面间的位置关系[J].牡丹江教育学院学报,2007,(6)利用线性方程组解的理论讨论空间中平面与平面、直线与直线及直线与平面间的位置关系,给出用矩阵的秩判定以上关系的方法及结论.[3]严坤妹.一类矩阵的秩[J].福建商业高等专科学校学报,2005,(4)矩阵的秩是矩阵的一个重要不变量,根据两个重要的矩阵的秩的不等式以及分块矩阵的初等变换的性质,本文研究了一类矩阵的秩的特征.[4]戴红霞.关于矩阵的秩的例题教学[J].南京审计学院学报,2005,2(2)本文通过三个典型例题的具体讲解,加深学生对抽象概念"矩阵的秩"的理解和掌握.[5]余航.试论分块矩阵的秩[J].桂林师范高等专科学校学报,2001,15(3)任一矩阵都可求得它的秩,而在矩阵运算中,矩阵的分块是一个很重要的技巧.本文从不同角度,从特殊到一般地探求了分块矩阵的秩.[6]徐兰.利用分块矩阵探讨矩阵的秩的有关定理[J].昌吉学院学报,2003,(4)矩阵是线性代数的主要研究对象之一,利用分块矩阵,研究高阶矩阵的秩及矩阵在运算后秩的变化,得到有关的定理.[7]邹晓光.互素多项式矩阵的秩的一个简单结论及其应用[J].金华职业技术学院学报,2006,6(1)本文给出了互素多项式在矩阵的秩讨论中的一个简单结果:定理:设f(x),g(x)∈P[x],A是n阶方阵,若(f(x),g(x))=1,则n+r[f(A)g(A)]=r(f(A))+r(g(A)).以及结果的一些简单应用,对文献[1]中的一些结论进一步讨论.[8]张丽梅,乔立山,李莹.可逆坡矩阵与坡矩阵的秩[J].山东大学学报(理学版),2007,42(9)坡是两个元素的乘积小于等于每个因子的加法幂等半环.讨论了可逆坡矩阵的若干性质,证明了可逆坡矩阵必是满秩的.讨论了坡矩阵的行秩、列秩与Schein秩.给出了坡矩阵的Schein秩的一个重要性质.

矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

相关定义

定义1、在m*n矩阵A中,任意决定α行和β列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。

例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。

定义2、A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。

特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得:

若A中至少有一个r阶子式不等于零,且在r

#include

浅析矩阵的秩毕业论文

“秩”是指图像经过矩阵变换之后的空间维度,指的是列空间的维度。

我尽量补充完整矩阵秩=矩阵行的秩=矩阵列的秩,在这个意义上,就如七份草莓圣代所说那样把矩阵的行或列看作成向量,那么矩阵秩就是最大线性无关组向量个数矩阵秩也可以从行列式这个方面来看,若矩阵的任意(r+1)阶方阵的行列式=0,而至少在r阶方阵的行列式~=0,那么矩阵秩就是r矩阵秩也可以从方程组的解的方面考虑其意义矩阵秩也可以行向量空间及其正交空间方面考虑其意义也可以从矩阵的特征值方面考虑其意义。。。。。。

一般来说,如果将矩阵视为行向量或列向量,则秩是这些行向量或列向量的秩,即,包含在最大独立组中的向量数。在线性代数中,矩阵A的列秩是A的线性独立垂直列的最大数量。同样,行秩是A的线性独立水平行数的最大数量。

矩阵秩是反映矩阵固有特性的一个重要概念。让A成为一组向量,并将A的最大不相关组中的向量数定义为A的等级。定义 1.在m * n矩阵A中,行k与列k相交处的元素被任意确定以形成A的k阶子矩阵。这个子矩阵的行列式,一个叫做A的k阶子表达式,例如,在一个阶梯式矩阵中,选择 1,3 行和 3,4 列,由元素在其交点处组成的二阶子矩阵的行列式是矩阵A的二阶子公式。定义 =(aij)m × n的非零子公式的最大阶称为矩阵A的秩,其记录为rA、rankA或R(A)。

具体而言,零矩阵的秩被指定为零。显然,ra ≤ min (m,n) 很容易得到: 如果A中至少有一个r阶子公式不等于零,并且当r

通常,可逆矩阵称为全秩矩阵,det(A) ÷ 0; 非秩矩阵是奇异矩阵,det(A)= 0。根据行列式的性质 1(),矩阵A的换位等级与A的换位等级相同。计算以下矩阵的等级,以及A的所有三阶子表达式,其中一种行为为零; 或两行成比例,因此所有三阶子表达式均为零,所以rA = 2。

矩阵的秩一般有2种方式定义1.用向量组的秩定义矩阵的秩=行向量组的秩=列向量组的秩2.用非零子式定义矩阵的秩等于矩阵的最高阶非零子式的阶单纯计算矩阵的秩时,可用初等行变换把矩阵化成梯形梯矩阵中非零行数就是矩阵的秩

矩阵论文答辩

时下最时髦的就是:创新点与别人不一样的地方

最有可能问的是:1. 分块矩阵的初等变换 与 矩阵初等变换 的异同.2. 分块矩阵初等变换需注意什么. 3. 利用分块矩阵初等变换, 你得到了什么新的结论, 或对已有结论的证明有什么大的改进满意请采纳^_^

一、答辩陈述:

在答辩的陈述中,我从四个方面介绍了我的论文:

1、文章中需要用到的有关二次型、正定二次型等概念;

2、正定二次型的性质及判定方法;

3、半正定二次型的性质及判定方法;

二、答辩分析:

第一部分主要介绍了论文中需要用到的有关二次型、正定二次型等概念。

第二部分介绍了正定二次型的4中判定方法。

第三部分是文章的重点部分,我通过查找资料以及与正定二次型性质判定方法作对比,从而总结了4中主要的判定方法。

最后一部分根据正定二次型的性质判定方法归纳了其9方面的应用。

三、答辩中提出的问题及回答要点:

1、正定二次型的矩阵的行列式值有什么特点?

答:正定二次型的矩阵为正定矩阵,它的行列式值大于零。

四、判断方法:

主要介绍了4种判定方法,分别为:

1、二次型半正定的充分必要条件是它的标准型的所有系数都是非负的;

2、二次型半正定的充分必要条件是它的正惯性指数与秩相等;

3、二次型半正定的充分必要条件是它的矩阵的特征值均为非负数;

4、二次型半正定的充分必要条件是它的矩阵的各阶主子式均为非负数。其次,还可以用半正定二次型的定义进行判定。

五、论文虽未论及,较密切相关的问题:

1、本文主要介绍了正定、半正定二次型的性质及判定方法,然而在实际应用中,更多的会用到正定矩阵相关概念。

2、如(正定二次型在线性最小二乘法问题的解中的应用),对于此部分知识文中没有论及。因此,需要进一步归纳总结正定矩阵的性质,并将其与本文内容相结合,使本部分内容系统化。

矩阵的逆论文答辩

逆矩阵在线性代数中可是重点问题,Ax=B 通过求逆,得到X矩阵

逆矩阵就是乘原矩阵得到单位矩阵的矩阵(无论左乘还是右乘).不是所有的矩阵都有逆矩阵,没有逆矩阵的矩阵称为奇异矩阵.矩阵的逆运算可以类比为数的除法,不过要注意左乘还是右乘.逆矩阵在矩阵理论有重要意义,也可以用来解线形方程组.

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

|A^(-1)|=|A|^(-1)逆矩阵;

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。

证明:

因为 (AB)(B^-1A^-1)

= A(BB^-1)A^-1

= AEA^-1

= AA^-1

= E

所以 (AB)^-1=B^-1A^-1

可逆矩阵还具有以下性质:

(1)若A可逆,则A-1亦可逆,且(A-1)-1=A [4]  。

(2)若A可逆,则AT亦可逆,且(AT)-1=(A-1)T [4]  。

(3)若A、B为同阶方阵且均可逆,则AB亦可逆,且(AB)-1=B-1 A-1。

矩阵的秩论文研究目标怎么写

国内主要研究矩阵秩的变换和分解。矩阵秩的求法很多,一般归结起来有以下几种:1)通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。2)通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。3)对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。4)对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。5)对矩阵整体做初等变换(行变换为左乘初等矩阵,列变换为右乘初等矩阵)。此类情况多在证明秩的不等式过程有应用,技巧很高与前面提到的分块矩阵联系密切。

矩阵的秩是反映矩阵固有特性的一个重要概念。计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则方程组只要有一个解。在这种情况下,它有精确的一个解,如果它的秩等于方程的数目。如果增广矩阵的秩大于系数矩阵的秩,则通解有 k 个自由参量,这里的 k 是在方程的数目和秩的差。否则方程组是不一致的。在控制论中,矩阵的秩可以用来确定线性系统是否为可控制的,或可观察的。

通过化简矩阵 使矩阵达到最简 有多少行非零的 秩就是多少 秩和解的个数有关

矩阵的秩的定义:是其行向量或列向量的极大无关组中包含向量的个数。能这么定义的根本原因是:矩阵的行秩和列秩相等(证明可利用n+1个n维向量必线性相关)矩阵的秩的几何意义如下:在n维线性空间V中定义线性变换,可以证明:在一组给定的基下,任一个线性变换都可以与一个n阶矩阵一一对应;而且保持线性;换言之,所有线性变换组成的空间End(V)与所有矩阵组成的空间M(n)是同构的。对于每一个线性变换,它所对应矩阵的秩就是V在此线性变换下的像空间的维数。

  • 索引序列
  • 矩阵秩的论文答辩ppt
  • 浅析矩阵的秩毕业论文
  • 矩阵论文答辩
  • 矩阵的逆论文答辩
  • 矩阵的秩论文研究目标怎么写
  • 返回顶部