首页 > 学术论文知识库 > 隐函数的求导方法问题研究论文

隐函数的求导方法问题研究论文

发布时间:

隐函数的求导方法问题研究论文

直接求导即可,具体过程如下:

如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)即显函数来表示。F(x,y)=0即隐函数是相对于显函数来说的

扩展资料:

对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。

隐函数导数的求解一般可以采用以下方法:

方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;

方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);

方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;

方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。

参考资料来源:百度百科——隐函数

如何求隐函数的导数?隐函数的导数可以用链式法则求解,即将函数中的未知量进行展开,然后再根据一阶微分方程来求解。具体步骤如下:1. 先将要求的隐函数表达式化为明文形式。 2. 根据已知条件和相应的微分定义,对该表达式中所有未知量进行展开。 3. 用微分方程对所有变量进行一步微分处理。 4. 最后用上一步处理后产生的新方程代入原始方程中,并把所有常数集中在一侧(即不受影响部分) ,就可以得出隐函数的导数了。

有关于隐函数的求导方法,详细介绍如下:

1、先把隐函数转化成显函数,再利用显函数求导的方法求导。隐函数左右两边对x求导,但要注意把y看作x的函数。利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值,把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)=0的形式。

2、隐函数是由隐式方程所隐含定义的函数。设F(x,y)是某个定义域上的函数。如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足F(x,y)=0,则称方程确定了一个隐函数。记为y=y(x)。显函数是用y=f(x)来表示的函数,显函数是相对于隐函数来说的。

3、推理:如果不限定函数连续,则式中正负号可以随x而变,因而有无穷个解,如果限定连续,则只有两个解,一个恒取正号,一个恒取负号,如果限定可微,则要排除x=±1,因而函数的定义域应是开区间(-1

直接求导即可。

求函数最值方法的研究论文

哥们是二中的吧~你去找一个高二的借一下就行了,因为高一和高二的作业是完全相同的!

1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法: 含参问题的定义域要分类讨论; 对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。(3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;②逆求法(反求法):通过反解,用y来表示x,再由x的取值范围,通过解不等式,得出y的取值范围;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域函数的性质:函数的单调性、奇偶性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:作差比较和图像法。应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。例:已知f(x)为奇函数,当x>0时,f(x)=x(1-x),则x<0时,f(x)=_______ 解:设x<0,那么-x>0代入f(x)=x(1-x),得f(-x)=-x(1+x), f(x)为奇函数 所以f(-x)=-f(x) 得f(x)=x(1+x),

6000字,100积分?空手套白狼呢

教学过程: 一、复习引入:上一节课,我们主要学习了有关增长率的数学模型,这种模型在有关产量、产值、粮食、人口等等增长问题常被用到.这一节,我们学习有关物理问题的数学模型二、新授内容:例1(课本第86页 例2)设海拔 x m处的大气压强是 y Pa,y与 x 之间的函数关系式是 ,其中 c,k为常量,已知某地某天在海平面的大气压为Pa,1000 m高空的大气压为Pa,求:600 m高空的大气压强(结果保留3个有效数字)解:将 x = 0 , y =;x = 1000 , y =,代入 得: 将 (1) 代入 (2) 得: 计算得: ∴ 将 x = 600 代入, 得: 计算得:=×105(Pa)答:在600 m高空的大气压约为×105Pa.说明:(1)此题利用数学模型解决物理问题;(2)需由已知条件先确定函数式;(3)此题实质为已知自变量的值,求对应的函数值的数学问题;(4)此题要求学生能借助计算器进行比较复杂的运算.例2在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到,,……, 共n个数据,我们规定所测量的物理量的“最佳近似值”a是这样一个量:与其他近似值比较a与各数据差的平方和最小.依次规定,从,,……, 推出的a=________.(1994年全国高考试题)分析:此题应排除物理因素的干扰,抓准题中的数量关系,将问题转化为函数求最值问题.解:由题意可知,所求a应使y=(a-)+(a-)+…+(a-) 最小由于y=na-2(++…+)a+(++…+)若把a看作自变量,则y是关于a的二次函数,于是问题转化为求二次函数的最小值.因为n>0,二次函数f(a)图象开口方向向上.当a= (++…+),y有最小值.所以a= (++…+)即为所求.说明:此题在高考中是具有导向意义的试题,它以物理知识和简单数学知识为基础,并以物理学科中的统计问题为背景,给出一个新的定义,要求学生读懂题目,抽象其中的数量关系,将文字语言转化为符号语言,即y=(a-)+(a-)+…+(a-),然后运用函数的思想、方法去解决问题,解题关键是将函数式化成以a为自变量的二次函数形式,这是函数思想在解决实际问题中的应用.例3某种放射性元素的原子数N随时间t的变化规律是N=,其中,λ是正的常数.(1)说明函数是增函数还是减函数;(2)把t表示成原子数N的函数;(3)求当N=时,t的值.解:(1)由于>0,λ>0,函数N=是属于指数函数y=类型的,所以它是减函数,即原子数N的值随时间t的增大而减少(2)将N=写成=根据对数的定义有-λt=ln所以t=- (lnN-ln)= (ln-lnN) (3)把N=代入t= (ln-lnN)得t= (ln-ln)= (ln-ln+ln2)= ln2.三、练习:1.如图,已知⊙O的半径为R,由直径AB的端点B作圆的切线,从圆周上任一点P引该切线的垂线,垂足为M,连AP设AP=x⑴写出AP+2PM关于x的函数关系式 ⑵求此函数的最值解:⑴过P作PD^AB于D,连PB 设AD=a则 ∴ ⑵当时 当时2.距离船只A的正北方向100海里处有一船只B,以每小时20海里的速度,沿北偏西60°角的方向行驶,A船只以每小时15海里的速度向正北方向行驶,两船同时出发,问几小时后两船相 距最近?解:设t小时后A行驶到点C,B行驶到点D,则BD=20 BC=100-15t过D作DE^BC于E DE=BDsin60°=10t BE=BDcos60°=10t∴EC=BC+BE=100-5t CD==∴t=时CD最小,最小值为200,即两船行驶小时相距最近3.一根均匀的轻质弹簧,已知在600N的拉力范围内,其长度与所受拉力成一次函数关系,现测得当它在100N的拉力作用下,长度为,在300N拉力作用下长度为,那么弹簧在不受拉力作用时,其自然长度是多少?解:设拉力是 x N (0≤x≤600) 时,弹簧的长度为 y m 设:y = k x + b 由题设: ∴所求函数关系是:y = x + ∴当 x = 0时,y = , 即不受拉力作用时,弹簧自然长度为 m四、小结:通过本节学习,进一步熟悉数学建模的方法,能运用数学模型解决一定的关于物理的实际问题,提高解决数学应用题的应变能力.五、课后作业:要使火车安全行驶,按规定,铁道转弯处的圆弧半径不允许小于600m如果某段铁路两端相距156m,弧所对的圆心角小于180o,试确定圆弧弓形的高所允许的取值范围分析:以弓形的高x为自变量,半径R为孙函数,求出R关于x的函数关系式 解:如图,设圆弧的半径OA=OB=Rm,圆弧弓形的高CD=xm,在RtΔBOD中,DB=78,OD=R-x则∴依题意 R≥600 即 ≥600 ∴≥0 解得 ≤ 或 ≥(不合题意) 答:圆弧弓形的高的允许值范围是(0,). 六、板书设计(略)

函数极值的求法研究论文

函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

我知道能函授问题明白道理

利用导数研究函数切线问题论文

(1)导数 的几何意义就是曲线在点处的切线斜率,其切线方程可以表示为,这里一定不能忽视必须是曲线上的点这一条件,否则就会出错。此外还要注意的是:函数 在点处可导是曲线在点有切线的充分而不必要条件,即函数 在点处可导,则曲线 在点 一定存在切线;但曲线 在点存在切线时,函数在点处不一定可导。(2)求曲线的切线方程一般步骤是: ①求出函数 在点 处的导数,即曲线 在点 处的切线的斜率; ②在已知切点坐标和切线斜率的条件下,求得切线方程为: ③特别地,如果曲线 在点 处的切线平行于 轴,这时导数不存,根据切线定义,可得切线方程为 。3、工具性:高考中对导数考查的第二层次,这一层次包括求函数的极值、最值,求函数的单调区间,证明函数的单调性等。因为导数已经成为分析和解决问题必不可少的“工具”,由于其应用的广泛性,提供了研究函数问题、曲线问题等的一般性方法,运用它可以简捷的解决一些实际问题和传统中学数学方法难以研究的问题。因此,在复习上,要掌握以下几个重要的知识点:(1)利用导数研究函数单调性的方法,求可导函数 单调区间的一般步骤:①分析 的定义域;②求导数 ;③解不等式 (或 < );确定递增(或递减)区间,单调区间一定是定义域的子集;(2)求可导函数 极值的一般步骤:①求导数 ;②求方程 的全部实根;③判断 在实根左、右的符号,由增到减为极大,由减到增为极小。(3)求可导函数 在闭区间上最值的方法:①求出函数在给定区间内的所有极值;②求出函数在闭区间上的两个端点值;③将极值与端点的函数值作比较,得出最值。 (4)导数与函数的单调性的关系:① 与 为增函数的关系: 能推出 为增函数,但反之不一定。如函数 在 上单调递增,但 ,∴ 是为增函数的充分不必要条件。② 时, 与 为增函数的关系:若将 的根作为分界点,因为规定 ,即抠去了分界点,此时 为增函数,就一定有 。∴当 时, 是 为增函数的充分必要条件。③ 与 为增函数的关系: 为增函数,一定可以推出 ,但反之不一定,因为 ,即为或。当函数在某个区间内恒有,则为常数,函数不具有单调性。∴ 是 为增函数的必要不充分条件。④ 与 为减函数的关系类似。(5)还要特别提示以下几点:①极值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小的,并不意味着它在函数的整个定义域内最大或最小,且极大值不一定比极小值大:②如果函数在区间内只有一个点使,此时函数在这点有极大(小)值,那么不与端点比较,就可以知道该极大(小)值就是最大(小)值;③函数在其定义域上的最大值、最小值最多各有一个,而函数的极值可能不止一个,可能没有。4、创新性:导数知识点的引入,不仅仅创新了解题的手段,重要的是试题内容和思想方法上的创新。创新是高考对导数考查的第三层次,这一层次是将导数的内容和传统内容中的有关函数、三角、数列、不等式、向量和解析几何等交汇在一起,设计出许多情境新颖、综合性强的试题(包括应用题)。这些问题的求导的过程并不难,它考查的核心在于函数的性质及下列些重要的思想方法:(1)数形结合思想:根据函数的单调性与极值、最值的情况,可以大致的描绘出函数的图像,以帮助我们直观形象的分析问题;(2)化归和转化思想:愈来愈新的形式多样的导数问题,通过归纳类比,就可转化为我们熟悉的数学问题。例如,求解恒成立时实数范围时,可以转化为求的最大值问题;不等式的证明可转化为求函数单调性的问题;(3)分类与整合思想:用导数处理含参数的问题,往往要根据极值点的大小和位置进行分类讨论,然后对各类情形进行整合(4)综合数学思想:用导数求方程根的个数或根的分布的问题,简捷明了,这类问题可转化为根据的单调区间和极值,来判断的图像与轴的交点问题,这既是数形结合思想的体现,也是函数与方程思想的体现。在本部分内容复习上,还要在充分认识导数作为工具在研究函数等问题提供了有效的途径和简便方法的基础上,认识导数在解决其他问题上的不可替代的优越性。要做相关的针对性模拟训练,要在老师的带领下总结方法,掌握一定的解题技巧,以拓展解题的空间,开阔解题的视野,培养创新思维能力。具体说,要关注下列一些问题:(1)处理生活中的优化问题:对于实际生活中的优化问题,如果其目标函数为高次多项式函数,简单的分式函数,简单的无理函数,简单的指数函数、对数函数,或它们的复合型函数,用过去的知识求其最值往往没有一般方法,即使能求出,也要涉及到较高的技能技巧,而用导数法求其最值,其优越性则更为突出。(2)证明不等式:利用函数单调性证明不等式,关键在于构造好相应的函数,然后在相应的区间上用导数知识判断其单调性,再得到所证的不等式。中学范围内利用导数解证不等式主要有两种方法:一是借助函数的单调性,二是借助函数的最大(小)值。无论哪种方法,解题过程变得简洁的关键是利用了导数。(3)处理含参数的恒成立不等式问题:求恒成立的无理不等式中参数的取值范围问题,往往在短时间内往往难以很快寻得正确的解题思路。本题从导数知识入手,解题思路清晰,令人耳目一新,体现了导数较高的工具应用价值。5、思辩性考查导数内容的第四个层次,是对相关概念的辨析。这部分内容的复习要关注下列几个问题:(1)“过某点的切线”与“在某点的切线”是不同的,“过某点的切线”中的某点可以不在切线上,而“在某点的切线”中的某点一定在这条曲线上;过某点的切线可能不止一条,但在某点的切线条数一定是唯一;(2) 是函数 为增函数的充分而不必要条件,不要误认为是充要条件;(3)若可导函数 在点 处连续且两侧的导数异号,则点 是函数的极值点,但是函数 在极值点处的不一定可导;(4)可导函数的极值点一定是导数为0的点,但是导数为0的点不一定是极值点;(5)函数 在 处连续是函数 在 处可导的必要条件而非充分条件,即是说非连续函数是不能求导的。6、求导之前,如果可以的话,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量。7、定积分与微积分基本定理:(1)定积分的定义过程包括“分割、近似求和、取极限”这几个步骤,这里包含着很重要的数学思想方法,只有对定积分的定义过程了解了,才能掌握定积分的应用。(2)微积分基本定理:(3)在不定积分中,由于 ,∴原函数不是唯一的, 但∵ , ∴ 也是 的原函数,因此在求定积分时,只需要一个原函数 即可。(4)利用定积分来求面积时,要特别注意位于轴两侧的图形的面积的计算,分两部分进行计算,然后求两部分的代数和,其结果可正可负。

求函数y=f(x)过点P(x0,f(x0))的切线,若y=f(x)在点P可导,则f’(x0)存在, 切线的斜率存在,切线当然存在.P是切点.若y=f(x)在点P当Δx→0,则Δy/Δx→∞, 切线的斜率不存在,但切线存在.P是切点.其他情况P不是切点.切线不就是和y=f(x)的图像只有一个交点吗?这句话现在应改成:切线不就是和y=f(x)的图像在点P的附近只有一个交点吗?不然的话,y=x^3-x在x=√3/3处的切线与y=x^3-x有两个交点.正确的说法是函数y=f(x)图象与它的切线在切点附近只有一个交点;与切线在定义域上至少有一个交点.

微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。

摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.

关键词:微积分;背景;作用;函数

一、微积分进入高中课本的背景及必要性

在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。

柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。

从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!

二、微积分在中学数学中的作用

1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.

2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。

3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。

三、国际上一些教材对微积分知识的处理

以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。

当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!

摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。

关键词:微积分;起源;内容;方法

微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:

一、微积分起源的介绍

微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。

介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。

二、介绍微积分内容及方法

微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。

三、为什么要学习高等数学

微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:

微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。

前言

21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。

一、我国微积分教学改革的现状

目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。

首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。

其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。

再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。

二、微积分课改的必要性

随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。

(1)社会高度发展提出的要求

微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。

(2)科技的发展提出的需要

当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。

(3)人类思维发展的需要

微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。

三、微积分课改的内容

根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。

1、课程基本理念的改革

微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。

2、课程内容的改革

根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。

3、课程设计的改革

原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。

4、教学方法的革新

(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。

(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。

5、教学工具的革新。

现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。

四、小结

微积分? 最直接的切线问题撒

数学问题的论文研究方法

论文的研究方法有哪些

论文的研究方法有哪些,研究方法是在一个研究中发现新的现象、新的事物,或者提出新理论、观点,论文研究方法需要大量阅读法,找到不足和创新点,来完善自己的论文,下面一起来学习一下论文的研究方法有哪些。

一、思维方法

思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。

二、内容分析法

内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的`过程。

三、文献分析法

文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。

四、数学方法

数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。

一、规范研究法

会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。

二、实证研究法

实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。

三、案例分析法

案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法,具体说来:

四、比较分析法

是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。

数学论文论文选题与论文写作方法

数学论文选题是怎样的呢?数学论文写作方法又是什么呢?欢迎阅读我整理的数学论文论文选题与论文写作方法,希望能够帮到大家。

0引言

在审阅数学论文过程中发现很多论文内容简单,或是一两个习题证明或是将教材内容,他人论文组合改编,简单重复,更有甚者直接抄袭。很多从事数学教育工作人士认为数学教育论文难写,事实上他们还没有掌握撰写数学论文的规律。

数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。 数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。

1撰写数学论文应具有原则

创新性

作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。

科学性

科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。

规范性

规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。

2撰写数学论文忌讳

大题小作

论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。

关门写稿

一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的 论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。

形式思维混乱

科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。

3关于数学论文选题

数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:

(1)需要性 选题应从社会需要和科学发展的需要出发。

(2)创新性 选题应是国内外还没有人研究过或是没有充分研究过的问题。

(3)科学性 选题应有最基本的科学事实作依据。

(4)可行性 选题应充分考虑从事研究的主客观条件,研究方案切实可行。

4关于数学论文文风

语言表达确切

从选词,造句,段落,篇章,标点符号都应正确无误。

语言表达清晰简洁

语句通顺,脉络清楚,行文流畅,语言简洁。

语言朴实

语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。参考文献(略)

知识扩展:数学论文范文

题目:高职数学教学发展研究

摘要:数学作为高等职业院校的基础课程,是高等职业教育课程体系中不可缺少的重要组成部分,但在教学实际中存在不少问题,致使教学效果不佳。本文对高职数学教学中的问题进行了分析,并提出了解决对策。

关键词:高职数学;教学体会

高职数学作为高职院校的基础课程,是高等职业教育课程体系中不可缺少的重要组成部分,但由于高职生源和数学课程本身的特点,使得高职数学的改革始终没有突破性的进展。本文笔者对高职院校学生来源的差异性、专业设置需求、对学生评价方式等问题进行了阐述,并围绕提高教学质量,改善当前教学现状,促进学生发展提出解决对策。

1高职数学教学中的主要问题

学生来源存在差异性,基础水平参差不齐。高职学生来源基本上可以分为两类,一类是来自各县职教中心对口升学班的学生,这类学生走对口升学的路子,学专业技能,考理论知识和实际操作两项,但对理论知识的分数要求很低;另一类是普通高中的学生,但是高考的分数也不高。这两类学生的知识基础不同,以数学为例,职教生源中很多人高中数学没学完,而普高班中的学生已接触了高等数学中的极限和导数等内容,这样不同基础的学生在一起上课,接受能力是不一样的,必然会有很大的差异。

教学方式和内容设置不能满足学生需求。随着高职办学方式的变化,原来一成不变的高等数学的教学方式和内容已不适应当前学生的学习需求了;为了适应市场经济的发展,教师要根据专业的需求来改变高等数学的教学方法,对于本专业能够应用的内容该多讲的要多讲,对于本专业不需要的内容该删的就删掉。在高职教学中校本教研已成为一种需求,学生的基础课知识够用也已成了一个教学的原则,这是提高教学质量的一个措施。

评价体系落后。一般情况下,我们总是习惯以分数来评价学生,对于当前教学上的变化这样的评价方式也有点落后,实际上,高职学生的学习能力体现在两大块,一是理论学习,一是技能操作,因此,在评价体系上要跟上时代的变化,要由过去单一的评价方式变为多样化的评价方式。在高职学生中有很多理论虽然差点、但技能操作过硬的学生。如汽修专业的学生,他们的动手操作是一流的,但理论知识稍差,这并不影响他们毕业后成为一个好技工。

2提高高职数学教学的策略

教学中要突出以“学生为本”、“能力为本”的指导思想。高职院校的教育目标中有一点是以培养技能型的人才为主,基于这种教育理念,在教学中教师要贯彻以学生为中心的指导思想,将教学重点放在学生的技能培养上。因此,学生的管理制度、教师的教学计划等内容要与培养目标相融合,并能突出学生的主体地位,使教学能更好地为学生服务,这也符合当前素质教育的原则,倡导学生在学中做,做中学,体现高职的教学特点。

重视教学内容的设置。在教学内容方面,学校提出了理论够用的`原则,鼓励教师将专业基础知识和专业技能相结合,定期不定期召开教学研讨会,根据专业课需求来讲解知识。以高等数学的教学为例,像在行政管理专业中用到的税收、最大收益、最佳方案等知识,对应高等数学中的与极值有关的问题就要多讲、讲透,而像变力做功、曲率及曲率半径这些是物理专业所必需的,那么在行政管理专业中就不用讲了,这样的内容具有很强的针对性,学生学起来不但轻松,兴趣也更浓。

评价体系多元化。在教学中,教师只有采取多种评价措施才能调动学生学习的积极性。高职院校中专业不同要求也不一样,因此,教师要根据学生的实际情况进行相应的评价,突出专业特色。以计算机专业为例,很多学生上机操作都很熟练,可是理论考试时却有一半不及格,针对这种情况,笔者及时调整了考核方案,在评价学生时以上机操作为主,不再考核学生的理论知识,计算机就是侧重应用,学生的上机操作通过了,就达到教学的目的了。

总的说来,高职数学的教学难度较大,而且很多学生的数学基础差,如果教师单纯地为了教课而教课,不顾学生的实际情况,不采取合适的教学方法,不仅教学质量提不上去,培养出来的学生也不能满足社会的需求。因此,教师要以学生为本,合理开发教材,利用多元化的评价手段来评价学生,以达到激发学生学习兴趣的目的,最终使教学的质量得到提高。

参考文献

[1]刘玉凤.谈高职高等数学教学的体会[J].辽宁教育研究,2000(S1):170.

[2]杨晓春.关于高职高等数学教学的几点思考[J].

论文研究方法包括哪些

论文研究方法包括哪些,大学生活的最后一年同学们是要写毕业论文的,而毕业论文对于每位同学来说都有很大的意义,下面大家就跟随我一起来看看论文研究方法包括哪些的相关知识吧,希望对大家能有所帮助。

一、规范研究法

会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。

二、实证研究法

实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。

三、案例分析法

案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法,具体说来:

四、比较分析法

是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。

五、思维方法

思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。

六、内容分析法

内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的过程。

七、文献分析法

文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。

八、数学方法

数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的.统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。

信息研究法

信息研究方法是利用信息来研究系统功能的一种科学研究方法。美国数学、通讯工程师、生理学家维纳认为,客观世界有一种普遍的联系,即信息联系。当前,正处在“信息革命”的新时代,有大量的信息资源,可以开发利用。信息方法就是根据信息论、系统论、控制论的原理,通过对信息的收集、传递、加工和整理获得知识,并应用于实践,以实现新的目标。信息方法是一种新的科研方法,它以信息来研究系统功能,揭示事物的更深一层次的规律,帮助人们提高和掌握运用规律的能力。

个案研究法

个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其形成过程的一种研究方法。个案研究有三种基本类型:

(1)个人调查,即对组织中的某一个人进行调查研究;

(2)团体调查,即对某个组织或团体进行调查研究;

(3)问题调查,即对某个现象或问题进行调查研究。

描述性研究法

描述性研究法是一种简单的研究方法,它将已有的现象、规律和理论通过自己的理解和验证,给予叙述并解释出来。它是对各种理论的一般叙述,更多的是解释别人的论证,但在科学研究中是必不可少的。它能定向地提出问题,揭示弊端,描述现象,介绍经验,它有利于普及工作,它的实例很多,有带揭示性的多种情况的调查;有对实际问题的说明;也有对某些现状的看法等。

模拟法(模型方法)

模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。

定量、定性分析法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。

定性分析法就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。

跨学科研究法

运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。科学发展运动的规律表明,科学在高度分化中又高度综合,形成一个统一的整体。据有关专家统计,现在世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言、方法和某些概念方面,有日益统一化的趋势。

  • 索引序列
  • 隐函数的求导方法问题研究论文
  • 求函数最值方法的研究论文
  • 函数极值的求法研究论文
  • 利用导数研究函数切线问题论文
  • 数学问题的论文研究方法
  • 返回顶部