中位数,又称中点数,中值。中位数是按顺序排列的一组数据中居于中间位置的数,即在这组数据中,有一半的数据比他大,有一半的数据比他小,这里用m来表示中位数。(注意:中位数和众数不同,众数指最多的数,众数有时不止一个,而中位数只能有一个。)
中位数特点
1、中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
2、有些离散型变量的单项式数列,当次数分布偏态时,中位数的代表性会受到影响。
3、趋于一组有序数据的中间位置
扩展资料
中位数与其他数区别联系
1、平均数是通过计算得到的,因此它会因每一个数据的变化而变化。
2、中位数是通过排序得到的,它不受最大、最小两个极端数值的影响。部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向。
使用中位数的优缺点:
平均数:需要全组所有数据来计算;易受数据中极端数值的影响。中位数:仅需把数据按顺序排列后即可确定;不易受数据中极端数值的影响。众数:通过计数得到;不易受数据中极端数值的影响。
参考资料来源:百度百科-中位数
一组数,按从小到大(或从大到小)的顺序排列后,中间的一个数或中间两个数的平均数叫做这组数的中位数
平均数:x上面一小横。
中位数用M表示,众数用M表示,在分组的情况下,分别用中位数和众数的计算公式,因此经常用到M、M这两个符号.学生往往把这两个符号混在一起,谁表示谁分不清。M是英语M(平均数、中项)的缩写,M是M(最多数、最大量)的缩写,这样一联想就不会分不清了。
相关介绍:
众数是样本观测值在频数分布表中频数最多的那一组的组中值,主要应用于大面积普查研究之中。众数是在一组数据中,出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。
一组数据中的众数不止一个,如数据2、3、-1、2、1、3中,2、3都出现了两次,它们都是这组数据中的众数。一般来说,一组数据中,出现次数最多的数就叫这组数据的众数。
一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数,注意:和众数不同,中位数不一定在这组数据中)
中位数和四分位数是用来描述分布未知或不满足正态分布的数据的集中趋势和离散趋势的,对于这种数据除了进行统计描述外,也可以进行统计推断。
只是采用什么方法需要根据数据分布特征来决定。通过绘制频数分布图、pp图或进行正态性检验可以分析数据的分布特征。如果数据分布满足正态性,就可以通过t检验(两组比较)或方差分析(多组比较)进行比较,如果数据不满足正态性,就可以采用秩和检验的方法进行比较。
当然,也可以将原始数据通过变量变换后,再采用t检验和方差分析的方法进行比较。以上的分析可以借助stata、spss、sas等统计软件实现。具体方法在医学统计论坛版上有许多的讨论,也可以去看看统计学教材。
应用
不论Q1,Q2,Q3的变异量数数值为何,均视为一个分界点,以此将总数分成四个相等部份,可以通过Q1,Q3比较,分析其数据变量的趋势。
四分位数在统计学中的箱线图绘制方面应用也很广泛。所谓箱线图就是 由一组数据5 个特征绘制的一个箱子和两条线段的图形,这种直观的箱线图不仅能反映出一组数据的分布特征,而且还可以进行多组数据的分析比较。这五个特征值,即数据的最大值、最小值、中位数和两个四分位数。即:
中位数又称中值,统计学中的专有名词,是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。
对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。
中位数是按顺序排列的一组数据中居于中间位置的数,即在这组数据中,有一半的数据比这组数据大,有一半的数据比这组数据小。
扩展资料:
统计学名词:
医学统计学:用统计学的原理和方法研究生物医学问题的一门学科。
变量(variable):观察单位的某项特征如身高,体重,薪资,物价。
变量值(value of variable):变量的观察结果(测量值)。
总体(population):是根据研究目的确定的同质的观察单位的全体,确切的说是同质的所有的观察单位某种变量值的集合。
样本(sample)从总体中随机抽取部分由代表性的观察单位,其测量值的集合称为样本。
随机抽样(random sample):按随机化原则从总体中抽取部分观察单位的过程。
同质(homogeneity):是针对被研究指标来讲,其影响因素相同。简单地理解就是指对研究指标影响大约可以控制的主要因素应尽可能相同。
参考资料:百度百科-中位数
中位数又称中值,统计学中的专有名词,是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。
对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。
中位数是按顺序排列的一组数据中居于中间位置的数,即在这组数据中,有一半的数据比这组数据大,有一半的数据比这组数据小。
扩展资料:
统计学名词:
医学统计学:用统计学的原理和方法研究生物医学问题的一门学科。
变量(variable):观察单位的某项特征如身高,体重,薪资,物价。
变量值(value of variable):变量的观察结果(测量值)。
总体(population):是根据研究目的确定的同质的观察单位的全体,确切的说是同质的所有的观察单位某种变量值的集合。
样本(sample)从总体中随机抽取部分由代表性的观察单位,其测量值的集合称为样本。
随机抽样(random sample):按随机化原则从总体中抽取部分观察单位的过程。
同质(homogeneity):是针对被研究指标来讲,其影响因素相同。简单地理解就是指对研究指标影响大约可以控制的主要因素应尽可能相同。
参考资料:百度百科-中位数
中位数(Medians)统计学名词,是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数,用Me表示。
中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据。中位数用Me表示。
中位数的算法:—般通常求中位数的算法:—般通常求中位数时,首先将数据从小到大排序,然后计算中位数的序号,如果总数个数是奇数,中间的那位数就是中位数。
如果总数个数是偶数,中位数就是中间那两个数的平均数值。首先将数据从小到大排序,然后计算中位数的序号,如果总数个数是奇数,中间的那位数就是中位数:如果总数个数是偶数,中位数就是中间那两个数的平均数值。
计算有限个数的数据的中位数的方法是:把所有的同类数据按照大小的顺序排列。如果数据的个数是奇数,则中间那个数据就是这群数据的中位数;如果数据的个数是偶数,则中间那2个数据的算术平均值就是这群数据的中位数。
平均数、众数和中位数的区别联系及优缺点:
区别联系:
平均数是通过计算得到的,因此它会因每一个数据的变化而变化。
中位数是通过排序得到的,它不受最大、最小两个极端数值的影响。部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
众数也是数据的一种代表数,反映了一组数据的集中程度。日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向。
优缺点:
平均数:需要全组所有数据来计算;易受数据中极端数值的影响。中位数:仅需把数据按顺序排列后即可确定;不易受数据中极端数值的影响。众数:通过计数得到;不易受数据中极端数值的影响。
中位数(Medians)统计学名词[1],是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据。中位数用Me表示。当变量值的项数N为奇数时,处于中间位置的变量值即为中位数;当N为偶数时,中位数则为处于中间位置的2个变量值的平均数。(注意:中位数和众数不同,众数不一定在中间)从中位数的定义可知,所研究的数据中有一半小于中位数,一半大于中位数。中位数的作用与算术平均数相近,也是作为所研究数据的代表值。在一个等差数列或一个正态分布数列中,中位数就等于算术平均数。
中位数又称中值,统计学中的专有名词,是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。
对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。
中位数是按顺序排列的一组数据中居于中间位置的数,即在这组数据中,有一半的数据比这组数据大,有一半的数据比这组数据小。
扩展资料:
统计学名词:
医学统计学:用统计学的原理和方法研究生物医学问题的一门学科。
变量(variable):观察单位的某项特征如身高,体重,薪资,物价。
变量值(value of variable):变量的观察结果(测量值)。
总体(population):是根据研究目的确定的同质的观察单位的全体,确切的说是同质的所有的观察单位某种变量值的集合。
样本(sample)从总体中随机抽取部分由代表性的观察单位,其测量值的集合称为样本。
随机抽样(random sample):按随机化原则从总体中抽取部分观察单位的过程。
同质(homogeneity):是针对被研究指标来讲,其影响因素相同。简单地理解就是指对研究指标影响大约可以控制的主要因素应尽可能相同。
参考资料:百度百科-中位数
是。中位数表示年龄的平均水平比使用算术平均数更为合适,计算起来也更为简便。医学统计中年龄的均数是中位数。
论文中可以用中位数表示平均水平。根据查询相关公开信息显示,中位数可以用来表示一组数据的平均水平,可以反映出数据的分布情况,比如数据的中心位置、离散程度等。
医学类毕业论文格式要求
论文一般由题名、作者、目录、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献、附录和致谢。以下是我为您整理的医学类毕业论文格式要求,欢迎参考阅读。
篇一:医学类毕业论文格式要求
1.题目:
题目应简洁、明确、有概括性,,字数不宜超过20个字(不同院校可能要求不同)。本专科毕业论文一般无需单独的题目页,硕博士毕业论文一般需要单独的题目页,展示院校、领导教师、答辩光阴等信息。英文部分一般需要应用TimesNewRoman字体。
2.版权声明:
一般而言,硕士与博士钻研生毕业论文内均需在正文前附版权声明,独立成页。个别本科毕业论文也有此项。
3.摘要:
要有高度的概括力,语言精练、明确,中文摘要约100-200字(不同院校可能要求不同)医学教导网编辑整|理。
4.关键词:
从论文标题或正文中挑选3~5个(不同院校可能要求不同)最能表达主要内容的词作为关键词。关键词之间需要用分号或逗号分开。
5.目录:
写出目录,标明页码。正文各一级二级标题(根据实际情况,也可以标注更低级标题)、参考文献、附录、致谢等。
6.正文:
专科毕业论文正文字数一般应在5000字以上,本科文学学士毕业论文通常要求8000字以上,硕士论文可能要求在3万字以上(不同院校可能要求不同)。
毕业论文正文:包括前言、本论、结论三个部分医学教导网编辑整|理。
前言(引言)是论文的开头部分,主要说明论文写作的目的、现实意义、对所钻研问题的认识,并提出论文的中心论点等。前言要写得简明扼要,篇幅不要太长。
本论是毕业论文的主体,包括钻研内容与法子、实验材料、实验结果与分析(讨论)等。在本部分要运用各方面的钻研法子和实验结果,分析问题,论证观点,尽量反映出自己的科研能力和学术水平。
结论是毕业论文的收尾部分,是环抱本论所作的收场语。其基本的要点就是总结全文,加深题意。
7.致谢:
简述自己通过做毕业论文的体会,并应对领导教师和协助完成论文的有关人员表示谢意。
8.参考文献:
在毕业论文末尾要列出在论文中参考过的所有专著、论文及其他资料,所列参考文献可以按文中参考或引证的先后顺序排列,也可以遵照音序排列(正文中则采纳相应的哈佛式参考文献标注而不出现序号)。
9.注释:
在论文写作历程中,有些问题需要在正文之外加以阐述和说明医学教导网编辑整|理。
10.附录:
对于一些不宜放在正文中,但有参考价值的内容,可编入附录中。有时也常将个人简介附于文后。
篇二:医学类毕业论文格式要求
一. 题目
题目是文章最首要和最先看到的部分,应能吸引读者,并给人以最简明的提示。
1.应尽量做到简洁明了并紧扣文章的主题,要突出论文中特别有独创性、有特色的内容,使之起到画龙点睛' 启发读者兴趣的作用。
2.字数不应太多,一般不宜超过20个字。
3.应尽量避免应用化学结构式、数学公式或不太为同行所熟识的符号、简称、缩写以及商品名称等。题目中尽量不要用标点符号。
4.必要时可用副标题来做补充说明,副标题应在正题下加括号或破折号另行书写。
5.若文章属于“资助课题”项目' 可在题目的右上角加注释角号(如 ※、#等)' 并在脚注处(该文左下角以横线分隔开)书写此角号及其加注内容。
6.为了便于对外交流' 应附有英文题名' 所有字母均用大写,放在中文摘要与关键词的下面。
二. 作者
署名是论文的必要组成部分' 要能反映实际情况。
1.作者应是论文的撰写者' 是指直接参与了整个或部分主要工作' 对该项钻研作出实质性贡献' 并能对论文的内容和学术问题负责者。
2.钻研工作主要由个别人设计完成的' 署以个别人的`姓名; 合写论文的署名应按论文工作贡献的多少顺序排列; 学生的毕业论文应注明领导老师的姓名和职称。作者的姓名应给出全名。
3.作者的下一行要写明所在的工作单位(应写全称),并注上邮政编码。
4.为了便于领会与交流' 论文的最后应附有通迅作者的详细通讯地址、电话、传真以及电子信箱地址。
三. 摘要
摘要是科研论文主要内容的简短、扼要而连贯的重述,必须将论文本身新的、最具特色的内容表达出来(重点是结果和结论)。
1.具体写法有“结构式摘要” 和“非结构式摘要”两种,前者一般分成目的、法子、结果和结论四个栏目,规定250字左右;后者不分栏目' 规定不超过150个字,目前国内大多数的医学、药学期刊都采纳“结构式摘要”。
2.摘要具有独立性和完整性,结果要求列出主要数据及统计学显著性。
3.一般以第三人称的语气写,避免用“本文”、“我们”、“本钻研”等作为文摘的开头。
四.关键词
关键词也叫索引词' 主要为了图书情报工作者编写索引' 也为了读者通过关键词查阅需要的论文。
1.关键词是从论文中选出来用以表示全文主题内容的单词或术语,要求尽量应用《医学主题词表》(MeSH) 中所列的规范性词(称叙词或主题词)。
2.关键词一般选取3~8个词' 并标注与中文一一相对应的英文关键词。每个词之间应留有空格以差别之。
3.关键词通常位于摘要之后,引言之前。
五.引言
(导言、序言)作为论文的起头' 起纲领的作用,主要回答“为什么钻研”这个课题。
1.引言的内容主要介绍论文的钻研背景、目的、范围' 简要说明钻研课题的意义以及前人的主张和学术观点' 已经取得的后果以及作者的意图与分析依据'包括论文拟解决的问题、钻研范围和技巧方案等。
2.引言应言简意赅' 不要等同于文摘或成为文摘的注释。如果在正文中采纳对比专业化的术语或缩写词时' 最好先在引言中定义说明。
3.字数一般在300字以内。
六. 正文
正文是科研论文的主体' 包括材料、法子、结果、讨论四部分内容' 其中某些部分(特别是法子和结果)还需列出小标题' 以使层次更加清晰。
1.材料 材料是科学钻研的物质根基' 需要详细说明钻研的对象、药品试剂、仪器设备等。
(1)如属动物实验钻研' 材料中需说明实验动物的名称、种类、品系、分级、数量、性别、年(月)龄、体重、健康状态、分组法子、每组的例数等;如属用药的临床观察' 应说明观察对象的例数、性别、年纪、职业、病例种类、症状体征、诊断标准、分组法子、治疗措施、临床观察指标及疗效判定标准(如痊愈、显效、好转、无效的标准)等。
(2)说明受试药的来源、批号、配制法子等,中药应注明学名、来源,粗提物应标明有效部位或成分的含量和初步的质量标准,若是作者本实验室自行提取的应简述提取历程。
(3)标明主要仪器设备的生产单位、名称、型号、主要参数与精密度等。
(4)标明主要药品、试剂的名称(尽量用国际通用的化学名' 不用商品名)、成分、批号、纯度、用量、生产单位、出厂日期及配制法子等。
2.方法
(1)采纳已有报道的法子只要注明文献的出处即可,不必详述其历程;若为有创意的法子' 要详细介绍创新之处,便于读者依此重复验证;若是对惯例方法作出改进的' 应具体描述改进部分及改进的理由' 同时也要注明原法的文献出处。
(2)对于实验条件可变因素的把持方法(如放射免疫法的质量把持)要加以详细说明' 以显示本文结果的可靠性和准确性。
(3)实验钻研论文要设立阴性对照组和阳性药物对照组,前者一般采纳溶剂作为对照,后者选用被公认的、确有疗效的药物,以验证实验法子的可靠性。
(4)在进行药效学和毒理学钻研时,通常要设高、中、低三个剂量组,以体现出药物的量-效关系。
(5)实验设计时应考虑到每组有足够的样本数以满足统计学处理的需要,,一般地说,小动物(如大、小鼠)每组至少8~10只,大动物(如狗)每组至少4~6只。同时应说明数据处理的统计学法子,统计学处理结果一般用P>、P<、P<三档表示。
3.结果 试验结果是论文的核心部分' 这一部分要求将钻研中所得到的各种数据进行分析、归纳' 并将经统计学处理后的结果用文字或图表的形式予以表达。
(1)表格
①表格设计要清晰、简练、规范。每个表格除有栏头、表身外,还要有表序(如表1、表2、表3……)和表题' 表题与表序居中写' 中间空一格将两者分开。在正文中要明确提及见表×。②表随文放' 一般应列在“见表×”文字的自然段落的下面。
③表格一般采纳三线表。
④表题应有自明性。若表中数据均用“均数±标准差”表示,则在表题的后面注上( ±S);若表中各组的例数相等,则在表题后面统一注上(n=X),若例数不等应另加一列,分辨注上各组的例数;表中计量单位若一致' 可写在表题的后面'若不一致应分辨写在每个栏头之下' 不加括号。
⑤表内阿拉伯数字高低各行的个位数对齐' 未发现的数据用“-”表示' 未测或无此项用空白表示' 实测结果为零用“0”表示。
(2)插图
①图包括示意图、曲线图、照片图等。
②图要求大小比例适中' 粗细均匀' 数字清晰' 照片黑白比较分明。与表一样图也要随文字放' 先见文字' 后见图。
③每幅图都要有图序和图题' 通常写在图的下方。图题要有自明性。
(3)结果处理时要尊重事实' 要求结果中的数据精确完整、可靠无误,同时要注意不应忽视偶然发生的现象和数据。
(4)药物的临床疗效钻研结果,要注意交待与药物有关的整个信息' 如疗效、毒副作用及注意事项等。
综述:一种。用(均数+-标准差)表示平均年龄。
26 28 33 45 48 51 50 55 56 58,这几个人的平均年龄计算:
均数=(26+28+33+45+48+51+50+55+56+58)/10=45
标准差= [(十个数的平方和 减去 十个数的和的平方/10)再除以6] 的开方
=[(21504-20250)/6] 的开方
=14
所以这十个人的平均年龄是(45+-14)。原始数据只精确到个位数,所以最终数值也只取个位数。
平均年龄是在一定时间、地点条件下,某一人口年龄的平均水平。也就是在人口群体内将各个体年龄差异抽象化,用以反映人口总体在一定时间、地点条件下的一般水平。
适用范围:
平均年龄适用于同一时期不同人口或同一人口不同时期的对比。平均年龄下降,则意味着人口中低年龄组的人数增多,比重增加,人口在逐渐年轻化;平均年龄上升,则意味着高年龄组人数增多,比重增加,人口逐渐老化。
参考资料来源:百度百科-平均年龄
这是一个统计学的问题,统计的方法有多种,不同的统计方法,得到的偏差值略有不同。
下面给出“标准差”的结果。
因为这里书写不便,故将我的答案做成图像贴于下方,谨供楼主参考(若图像显示过小,点击图片可放大)
楼主要想知道有多少种“算法”,建议楼主找本“统计学”方面的教材看看。
万事无绝对,均数应该就是平均的一个值吧,标准差就是可以在均值上下浮动的一个幅度的大小。