• 回答数

    3

  • 浏览数

    230

CuteGourmet
首页 > 学术期刊 > 图像分割毕设毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

一叶扁舟85

已采纳

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

90 评论

伊兰0518

论文地址:     V-Net 是另一种版本的3D U-Net。它与U-Net的区别在于: 1、3D图像分割end2ent模型(基于3D卷积),用于MRI前列腺容积医学图像分割。2、新的目标函数,基于Dice coefficient。3、数据扩充方法:random non-linear transformations和histogram matching(直方图匹配)。4、加入残差学习提升收敛。 (1)网络结构     其网络结构主要特点是3D卷积,引入残差模块和U-Net的框架,网络结构如图:          整个网络分为压缩路径和非压缩路径,也就是缩小和扩大feature maps,每个stage将特征缩小一半,也就是128-128-64-32-16-8,通道上为1-16-32-64-128-256。每个stage加入残差学习以加速收敛。    图中的圆圈加交叉代表卷积核为5*5*5,stride为1的卷积,可知padding为2*2*2就可以保持特征大小不变。每个stage的末尾使用卷积核为2*2*2,stride为2的卷积,特征大小减小一半(把2x2 max-pooling替换成了2x2 conv.)。整个网络都是使用keiming等人提出的PReLU非线性单元。网络末尾加一个1*1*1的卷积,处理成与输入一样大小的数据,然后接一个softmax。 (2)损失函数     由于前景比较小,在学习过程中不容易被学习到,因此重新定义了Dice coefficient损失函数。两个二进制的矩阵的dice相似系数为:          使用这个函数能避免类别不平衡。

102 评论

小呆呆321

随着现代化科学技术的快速发展,计算机图形图像处理技术也越来越成熟,为人们的生活、工作和学习提供了极大的便利。然而我们该如何写有关计算机图形图像处理的论文呢?下面是我给大家推荐的计算机图形图像处理相关的论文,希望大家喜欢!

《计算机图形图像处理技术分析》

摘 要:随着现代化科学技术的快速发展,计算机图形图像处理技术也越来越成熟,Photoshop、CAE、CAD等计算机图形图像处理软件被广泛的应用在各个领域,为人们的生活、工作和学习提供了极大的便利。在未来的发展过程中,要不断改进和完善计算机图形图像处理技术,推动计算机图形图像处理技术更加广泛的应用和发展。本文简要介绍了计算机图形图像处理技术,阐述了计算机图形图像处理技术的应用。

关键词:计算机;图形图像;处理技术

中图分类号:

计算机图形图像技术以计算机网络系统为平台,实现了人们主观意识中图像和真实存在的图形之间的相互结合,各种各样的计算机图形图像处理软件,为人们的主观处理和操作提供了很多的便利,随着现代化科学技术的快速发展,计算机图形图像处理技术的应用前景会更加广阔。

1 计算机图形图像处理技术概述

基本含义

计算机图形图像处理技术是指通过几何模型和数据将描述性的形象或者概念在计算机系统软件中进行存储、定稿、优化、修改和显现。计算机图形图像处理技术可以用来设计图形的色彩、做纹理和明暗的贴图处理、对图像进行建模设计和造型、消除图像隐线和隐面、对图形曲线和曲面进行拟合操作、数字化的图像存储、图像分割、分析、编码、增强、复原等操作[1],以及对图像进行形式转换,如投影、缩放、旋转、平移等几何形式。

基本组成

计算机图形图像处理技术的基本组成主要包括计算机硬件设备和计算机图形图像处理软件。计算机硬件设备性能的好坏对于计算机图形图像处理效果有着直接的影响,计算机图形图像处理软件将终端的显示和计算机结合在一起,由于计算机图形图像处理技术自身具有设计、存储、修改等功能,可以迅速整合图片数据,不仅可以保障计算机图形图像的处理效果,也可以有效地提高计算机中央处理器和计算机图形图像处理软件的运行效果。键盘和鼠标作为终端的输入设备,可以完成对图形的修改和定位,并且利用显示器、绘图仪、打印机等显示设备和输出设备,可以完整的保存计算机图片。

基本功能

计算机图形图像处理技术主要具有五个基本功能:对话、输入、输出、存储和计算。对话功能是指利用通讯交互设备和计算机显示器实现人机交流。输入和输出功能是指计算机图形图像处理软件可以随时输入和输出相关的图形图像。存数功能是指实时监控计算机的图形图像数据进行有效的检索和维护。计算功能是指计算机图形图像处理软件对相关的图形图像进行必要的数据交换和计算分析。

计算机图形图像处理技术的运行环境

计算机图形图像处理技术的硬件配置主要包括工作站和微型机,软件配置就是建立在工作站和微型机上的运行软件。计算机图形图像处理技术的工作站软件主要有TDI和Alias两种,工作站的软件主要负责处理计算机工作站中的各种图形图像处理。微型机上的计算机图形图像处理软件主要包括3DStudio、Winimage:morph和Photoshop等,3DStudio是微型机上的一种最主要的图形图像处理软件,被广泛的应用在多个计算机系统中;Winimage:morph是一种常用的二维图形图像处理软件,可以将一个图形或者图像制作成另外一个图形或者图像;Photoshop是一个非常专业的图形图像处理软件,其支持图形图像资料的分色制版,给人们进行图形图像处理带来很多的便利。

2 计算机图形图像处理技术的应用

用户接口

人们利用计算机系统的用户接口来操作多种计算机软件,计算机图形图像处理技术和用户接口的有效结合,借助于计算机操作系统构建友好的人机交互用户图形界面,极大地提高了计算机图形图像处理的简便性和易用性。近年来,微软公司普及和推广的图像化windows系统,充分发挥了计算机图形图像处理技术和用户接口全面融合的重要作用。

动画与艺术

随着计算机科学技术的快速发展,计算机硬件设备和计算机图形学也在蓬勃发展,静态的图形图像已经很难再满足人们对高质量、优质的、动态的图形图像的巨大需求,因此近年来,计算机动画技术蓬勃发展,特别是一些美术设计人员,多是依靠计算机图形图像处理软件来进行艺术创作。计算机图形图像处理技术的快速发展,同时推动了艺术设计技术的应用和开发,例如,3DS Studio Max三维设计软件和Photoshop二维平面设计软件[2]。

可视化科学计算

近年来,我国社会主义市场经济快速发展,各个领域的信息通信越来越频繁,计算机网络技术的广泛应用和普及,使得计算机系统数据库中的信息量日益庞大,计算机数据处理和分析技术面临着严峻的考验。相关的技术操作人员利用计算机数据处理和分析软件,很难准确、快速地从计算机的数据库系统中检索出需要的信息数据,难以总结出数据信息的共性和特征。通过将计算机数据处理技术和计算机图形图像处理技术有效的结合起来,可以通过计算机图形图像技术将大量的复杂结构的信息数据进行归类,操作人员通过计算机数据处理软件可以对有共性特征和本质特征的数据信息进行快速检索,极大地提高了计算机数据处理和分析的效率。可视化的科学计算技术最早出现在美国的科学协会研讨中,目前,可视化的科学计算技术被广泛的应用在气象分析、流体力学、医学等领域中[3],特别是在医学领域,利用可视化的科学计算技术可以实现高精度的远程控制和操作,可以应用在远程的脑部手术中,突破医学难题。在未来的发展过程中,可视化的科学计算技术将会在更多的领域发挥更加重要的作用。

工业制造和设计

目前,计算机图形图像处理技术在工业制造和设计领域应用的最为广泛,特别是二维三维CAD和CAE等计算机图形图像处理软件,不仅在工业生产的产品制造和产品设计过程中,还有土木工程领域,甚至是集成电路、网络分析和电子线路等电子电工领域都有着广泛的应用。在高精度的工业制造和设计领域中,利用计算机图形图像处理软件,可以在很短的时间内完成高精度的图形图像设计和画图,极大地提高了技术人员的工作效率,同时,标准的计算机图形图像处理程序,提高了工业制造和设计的精确度,有效地降低了设计误差。由于工业产品多是批量化的制造和生产,利用计算机图形图像处理技术,可以极大地提高企业批量化的运行效率和生产质量,降低工业产品的质量检测投入成本,为工业企业带来了更大的经济效益。

3 结束语

计算机图形图像处理技术的广泛应用和快速发展,推动了多个领域的技术革新,充分发挥人们的想象和创造力,创造出很多独特新奇的图形图像效果,丰富人们的日常生活,同时也为企业节约了很多的图形图像处理成本,提高了产品竞争力。在未来的发展过程中,计算机图形图像处理技术的应用前景会更加广阔。

参考文献:

[1]韩晓颖.浅谈计算机图形图像处理技术[J].福建电脑,2011(10):83-84.

[2]和晓娟.计算机图形图像处理技术的探讨[J].信息与电脑(理论版),2013(11):164-165.

[3]王应荣,王静漪.计算机图形图像处理技术[J].天津理工学院学报,2012(03):6-10.

作者简介:刘倩(1981-),女,满族,硕士,讲师,研究方向:图形图像处理与多媒体技术。

作者单位:宁夏大学 数学计算机学院,银川 750001

360 评论

相关问答

  • 图像分割毕设毕业论文

    图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读! 图像分割技术研究 摘要:图像分割是图像处理与计

    CuteGourmet 3人参与回答 2023-12-06
  • 病理图像分割有关论文参考文献

    随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读! 图像识别技术研究综述 摘要:随着图像处理技术的迅速发展,图像

    卡娃依叻 3人参与回答 2023-12-06
  • 图像的边缘检测与分割的论文

    我的也是这个题目 还没开始做呢 主要是对算法的介绍与比较,然后用其中某两种算法进行编程用软件处理出结果 在对结果进行分析 大概流程就是这样

    嘎嘎希尔 3人参与回答 2023-12-11
  • 图像分割算法的研究论文

    图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读! 图像分割技术研究 摘要:图像分割是图像处理与计

    先锋之家 3人参与回答 2023-12-11
  • 图形图像设计毕业论文

    数字图像处理OK,帮你处理。

    sy四叶草 4人参与回答 2023-12-11