• 回答数

    2

  • 浏览数

    213

明天再说0865
首页 > 学术期刊 > 平面几何最新研究进展论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

睡不死也睡

已采纳

小学教材将几何图形的学习内容分为几个阶段:初步认识立体图形——认识平面图形——平面图形的测量与计算——再次认识立体图形——立体图形的测量与计算。教材按照“立体图形——平面图形——立体图形”的顺序进行编排,让学生体会从整体到部分再到整体的学习思路,也明确了平面图形和立体图形的关系。对此,我认为教师在教学中要注重让学生想象、动手操作、观察、探究、总结,让学生由浅入深地学习几何知识,找到形体之间的联系,从而发展空间思维。一、注重生活中的形体,让数学生活化数学来源于生活,又服务于生活。教师要结合教材,把生活中随处可见的几何图形与所教知识联系在一起开展教学。这样学生就能在不知不觉中获得数学知识。1.重视直观操作。学生是学习的主人,让学生主动参与数学活动,并通过想象、动手、观察、初步认识几何图形。例如,在教学“认识角”时,我是这样导入新课的:红领巾是少先队员的标志,让学生说说红领巾是什么形状的;然后用多媒体课件出示红领巾、五角星、剪刀等,让学生在图中找出角;接着让学生在教室里找角。我用这样的导入方式吸引学生的注意力,激发学生的学习兴趣,让学生对角有一个直观认识。2.重视动手操作。课程标准指出:动手操作是学生学习数学的重要方式之一。动手操作不仅可以让学生强化数学与生活的联系,还可以使学生在未达到抽象思维水平之前,通过自主探索的形式学习数学知识。例如,在教学“圆的周长”时,我让学生在课堂上测量圆的周长与直径,经过测量,学生发现:圆的大小与半径或直径的长短有关,但具体是什么关系呢?由于学生学过“圆由正方形切割而来”的知识,他们便猜测圆的周长比直径的四倍少一点。我再让学生动手测量圆的周长与直径。通过小组合作观察、交流,学生发现:在测量过的圆中,不管是大圆还是小圆,每一个圆的周长都是它直径的3倍多一些。我顺势引出圆周率的知识,引导学生通过自己的努力一步一步理解圆的周长。二、注重迁移的学习方法,构建知识体系数学知识具有紧密的联系性。教师在教学时要注重知识的前后联系,合理应用转化思想,引导学生用旧知识来探索新知。例如,在探究圆的面积时,教师可以问学生:“以前学的是直线图形的面积,而今天学的是曲线图形的面积,能否将圆转化成学过的图形,怎样转化?”教师要帮助学生开拓思路,给予学生充分的时间与空间,让学生利用手中的学具画一画、折一折、剪一剪、拼一拼,然后通过观察、探究、讨论,使他们经历“猜想——操作——推导”的过程。经过教师的指点,有学生发现:可以将圆剪成若干个小块再拼成平行四边形或长方形。通过思考,学生认为拼成长方形更容易理解,因为圆的周长的一半相当于长方形的长,圆的半径相当于长方形的宽,长方形的面积=长×宽,因此圆的面积=圆周长的一半(C/2)×半径(r)=2πr/2×r=πr2。三、注重多媒体动态演示,优化教学效果1.从平面到立体,激起学生的学习兴趣。小学生的好奇心强,求知欲旺盛,喜欢动手操作,但是他们的空间思维处于萌芽阶段,直观思维仍占主导地位。在教学时,教师应该重视动手操作活动,将操作、观察、讨论活动贯穿教学始终,让学生通过找一找、摸一摸、比一比等实践活动加深体验、掌握知识、培养技能。但是要高质量地完成以上一系列的活动,单是靠动手操作是难以实现的,必须要借助多媒体把静态的教材内容变成动态的教学内容,化抽象为具体,化平面为立体,让教学变得生动起来,从而调动学生的学习兴趣。例如,在教学“圆柱的认识”时,我先用多媒体课件出示一个长方形和一个正方形,然后以长方形其中的一边为轴旋转一周后形成一个圆柱;以正方形其中的一边为轴,旋转一周后会形成一个圆柱。学生对圆柱有了初步认识后,我让他们举例说说生活中有哪些物体是圆柱,并说说圆柱的特点。用多媒体课件演示的过程中沟通了平面图形与立体图形的联系,同时充分调动了学生的学习兴趣和积极性,发展了学生的空间思维。2.激发学生的求知欲,培养学生的探索精神。例如,在推导圆的面积公式时,有的学生把圆纸片对折4次、8次、16次……分成8份、16份、32份……为了让学生体会极限的数学思想,我问:“能让折成的图形更像平行四边形吗?”学生无法再继续折纸时,我用多媒体课件展示(从4份开始,分的份数逐渐增多),分的份数越多,拼成的图形越来越接近平行四边形了,而把圆平均分成128份后,拼成的图形看起来就很像长方形了。通过多媒体课件展示教学内容可以弥补动手操作与想象的不足,帮助学生进一步感知“平均分的份数越多,拼成的图形越来越像平行四边形或长方形”。最终在多媒体课件的帮助下,学生顺利推导出圆的面积公式。四、注重课后练习,培养学生的应用意识当学生掌握学习的方法后,教师要让学生进行基础练习,以提高解决实际问题的能力。1.基础知识的应用。简单的练习就是直接利用公式解题,这种练习是针对全体学生的,可以使大部分学生巩固基础知识,让少部分学困生学有所成。例如,在教学“认识三角形”后,我出示练习题:(1)一个三角形有( )条边,有( )个角,有( )个顶点,有( )条高;(2)一个三角形的每条边的长度都相等,它的周长是45厘米,边长是多少厘米?2.解决实际问题。课程标准强调要培养学生的应用意识,当面对实际问题时,学生能主动尝试从数学角度解决问题。因此,学生在学完一个几何图形的知识后,要具备解决实际问题的能力。例如,在学完“圆的面积计算”后,我出示练习题:(1)一块圆形空地的直径是20米,每平方米草皮是8元,把这块圆形空地铺满草皮需要多少钱?(2)某小区有一个圆形花坛,直径为6米,在它周围用健身石铺了一条宽2米的小路,这条小路的面积是多少平方米?总之,几何图形的教学策略有很多,但不管是哪种策略,只要是能激发学生的学习兴趣、提高学生的学习积极性、有助于培养学生的思维能力的策略,都是好的教学策略。教师只有运用恰当的教学策略进行教学,学生的学习兴趣才会高涨,教学效果才会理想。

264 评论

吃货爱漫游

中国科学技术大学教授陈秀雄、王兵在微分几何学领域取得重大突破,成功证明了“哈密尔顿-田”和“偏零阶估计”这两个国际数学界20多年悬而未决的核心猜想。日前,国际顶级数学期刊《微分几何学杂志》发表了这一成果,论文篇幅超过120页,从写作到发表历时11年。

微分几何学起源于17世纪,主要用微积分方法研究空间的几何性质,对物理学、天文学、工程学等产生巨大推动作用。“里奇流”诞生于20世纪80年代,是一种描述空间演化的微分几何学研究工具。

“大到宇宙膨胀,小到热胀冷缩,诸多自然现象都可以归结到空间演化。”王兵教授比喻说,比如说我们吹一个气球,气球不断膨胀,可以用“里奇流”来研究它空间的变化,最后得到一个“尽善尽美”的理想结果。

陈秀雄与王兵团队长期研究微分几何中“里奇流”的收敛性,运用新思想和新方法,他们在国际上率先证明了“哈密尔顿-田”和“偏零阶估计”这两个困扰数学界20多年的核心猜想。

据了解,他们的研究耗时5年,论文篇幅长达120多页。王兵说,就像在写一篇小说,“不同之处在于,靠的是逻辑推导而不是故事情节推动。”

值得一提的是,由于篇幅浩繁、审稿周期漫长,这篇论文从投稿到正式发表又花了6年。不过,这么长的发表周期在数学界并不鲜见,因为审稿人需要足够多的时间去了解新的概念和方法。

《微分几何学杂志》审稿人评论认为,这篇论文是几何分析领域的重大进展,将激发诸多相关研究。菲尔兹奖获得者西蒙·唐纳森称赞说,这是“几何领域近年来的重大突破”。

在发布这篇论文之前,王兵还只是个“平平无奇”的几何学研究者。2003年与恩师陈秀雄的相遇,为他打开了里奇流的大门。

里奇流是什么呢?按照定义,里奇流即是用微积分的方式描述空间演化。王兵用肥皂泡解释了这种“描述”:“吹一个肥皂泡,一开始吹出来可能是哑铃状的,但在空中飘一会儿之后,形状会慢慢变化,直到变成了一个球之后不再演化了,这个‘球’就是泡泡的一种稳定状态。”里奇流的作用,就是研究“肥皂泡”的空间变化,最后得到一个“稳定”的理想结果。

2003年,俄国人佩雷尔曼宣称自己解决了庞加莱猜想,依据的就是里奇流方法。这让他成了当时里奇流研究中毋庸置疑的。然而这项解决了微分几何学“百年悬案”的划时代成果,却被刚刚赴美读研的王兵抓到了“把柄”。

在研究佩雷尔曼论文的过程中,王兵觉得其中有一个步骤他怎么都想不通。反复思考之后,王兵有了个大胆的猜测:佩雷尔曼错了。

年轻的研究生为了给学术大牛“挑错”,特地写了一封邮件。令王兵惊喜的是,这封“纠错贴”三天内就得到了佩雷尔曼的回复,学术大牛坦率地承认了行文中的错误,并很惊讶这个错误一直无人向他指出,虽然文章广为流传已经两年多了。

这次“书信往来”和佩雷尔曼的肯定,让王兵对里奇流的兴趣更浓了,他也期待和佩雷尔曼能有更多学术上的互动。

佩雷尔曼却没有给王兵这个机会。解决庞加莱猜想后,佩雷尔曼“看破红尘”,直接退出数学界。这让相关研究都陷入了停滞状态。而导师陈秀雄告诉王兵:“好的数学必然是有强大生命力的,佩雷尔曼的数学是一定要追随的,应该找到一个合适的切入点,继续深挖”。

佩雷尔曼曾在他的文章中提到,他的方法可以用来研究凯勒里奇流。佩雷尔曼下一步打算用自己的方法破解哈密尔顿-田猜测。

虽然佩雷尔曼的隐退让这个“打算”变得遥遥无期,但哈密尔顿-田猜测的发展前途还是被陈秀雄看到了。把里奇流和凯勒几何结合起来,解决复二维哈密尔顿-田猜测,成了陈秀雄王兵师徒俩随后五年的工作重心。

2013年年底,陈秀雄、王兵终于理清了证明思路,之后用了半年时间整理内容,2014年夏天,这篇凝结5年研究成果、师徒共同署名的证明被张贴到了预印本网站arXiv上。在这篇长达120页的文章中,师徒俩利用自行设计的辅助工具,搞定了哈密尔顿-田猜测中的空间紧性问题,还“顺手”解决了1990年提出的偏零阶估计猜测。

360 评论

相关问答

  • hiv治愈最新研究进展论文

    因为这四名患者接受了白血干细胞的移植后,没有出现很大的排斥现象

    方可可同学 7人参与回答 2023-12-10
  • 发展经济学最新研究进展论文

    经济论文的写作,是对经济学专业的学生所学的知识结论性 总结 。下面是我带来的关于经济学论文的内容,欢迎阅读参考!经济学论文篇1:《“经济学基础”教学环境的革

    hylandstar 3人参与回答 2023-12-06
  • 平面几何论文研究方法

    调查法 调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,

    佑玲天涯 5人参与回答 2023-12-09
  • 传播病最新研究进展论文

    论文题目同时应鲜明醒目,能吸引读者,向读者提供最直接的信息和对论文主题作准确的说明。下面我给大家带来医学相关专业硕士 毕业 论文题目参考,希望能帮助到大家!

    虫虫殿下 4人参与回答 2023-12-08
  • 平行宇宙最新研究进展论文

    我觉得平行宇宙不可能真正的存在,以前科学家竟然没有发现平行宇宙的存在,而且也没有给出合适的科学解释。

    葳蕤9999 11人参与回答 2023-12-11