• 回答数

    5

  • 浏览数

    239

竹径通幽处
首页 > 学术期刊 > 非线性薛定谔方程毕业论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

Leap丶飞。

已采纳

猜是猜不出这个方程的,如果说是建立,那根据什么建立呢?他应该是从一个普通的波动方程(机械波和电磁波),和德布罗意关系这两个条件凑出来的。普通的波动方程里面有用到波长这个物理量,但德布罗意指出,微观粒子和一个波联系有关系,这个波引导粒子前进(这是他的原始想法,并不是正统量子力学的解释)并且波的波长等于普朗克常量除以粒子的动量。于是,把普通波方程里面的波长参数代换成普朗克常数和粒子动量,经过数学整理,就可以得到薛定谔方程。薛定谔方程的获得,可以有很多方法。假如是生造出来的,肯定是不现实的,没有哪个天才能一下子创造一个方程说微观粒子符合这个条件,相反,薛定谔方程的获得是从以前的数学公式加上现在的新假说、新结果凑合、整理出来的。

144 评论

燕然铭石

1900年,马克斯·普朗克在研究黑体辐射中作出将电磁辐射能量量子化的假设,因此发现将能量与频率关联在一起的普朗克关系式。1905年,阿尔伯特·爱因斯坦从对于光电效应的研究又给予这关系式崭新的诠释:频率为ν的光子拥有的能量为hν;其中,因子h是普朗克常数。这一点子成为后来波粒二象性概念的早期路标之一。由于在狭义相对论里,能量与动量的关联方式类似频率与波数的关联方式,因此可以揣测,光子的动量与波长成反比,与波数成正比,以方程来表示这关系式, 路易·德布罗意认为,不单光子遵守这关系式,所有粒子都遵守这关系式。他于1924年进一步提出的德布罗意假说表明,每一种微观粒子都具有波动性与粒子性,这性质称为波粒二象性。电子也不例外的具有这种性质。电子是一种物质波,称为“电子波”。电子的能量与动量分别决定了伴随它的物质波所具有的频率与波数。在原子里,束缚电子形成驻波;这意味着他的旋转频率只能呈某些离散数值。这些量子化轨道对应于离散能级。从这些点子,德布罗意复制出玻尔模型的能级。在1925年,瑞士苏黎世每两周会举办一场物理学术研讨会。有一次,主办者彼得·德拜邀请薛定谔讲述关于德布罗意的波粒二象性博士论文。那段时期,薛定谔正在研究气体理论,他从阅读爱因斯坦关于玻色-爱因斯坦统计的论述中,接触德布罗意的博士论文,在这方面有很精深的理解。在研讨会里,他将波粒二象性阐述的淋漓尽致,大家都听的津津有味。德拜指出,既然粒子具有波动性,应该有一种能够正确描述这种量子性质的波动方程。他的意见给予薛定谔极大的启发与鼓舞,他开始寻找这波动方程。检试此方程最简单与基本的方法就是,用此方程来描述氢原子内部束缚电子的物理行为,而必能复制出玻尔模型的理论结果,另外,这方程还必须能解释索末菲模型给出的精细结构。很快,薛定谔就通过德布罗意论文的相对论性理论,推导出一个相对论性波动方程,他将这方程应用于氢原子,计算出束缚电子的波函数。因为薛定谔没有将电子的自旋纳入考量,所以从这方程推导出的精细结构公式不符合索末菲模型。他只好将这方程加以修改,除去相对论性部分,并用剩下的非相对论性方程来计算氢原子的谱线。解析这微分方程的工作相当困难,在其好朋友数学家赫尔曼·外尔鼎力相助下,他复制出了与玻尔模型完全相同的答案。因此,他决定暂且不发表相对论性部分,只把非相对论性波动方程与氢原子光谱分析结果,写为一篇论文。1926年,他正式发表了这论文。这篇论文迅速在量子学术界引起震撼。普朗克表示“他已阅读完毕整篇论文,就像被一个迷语困惑多时,渴慕知道答案的孩童,现在终于听到了解答”。爱因斯坦称赞,这著作的灵感如同泉水般源自一位真正的天才。爱因斯坦觉得,薛定谔已做出决定性贡献。由于薛定谔所创建的波动力学涉及到众所熟悉的波动概念与数学,而不是矩阵力学中既抽象又陌生的矩阵代数,量子学者都很乐意地开始学习与应用波动力学。自旋的发现者乔治·乌伦贝克惊叹,“薛定谔方程给我们带来极大的解救!”沃尔夫冈·泡利认为,这论文应可算是最重要的著作之一。薛定谔给出的薛定谔方程能够正确地描述波函数的量子行为。在那时,物理学者尚不清楚如何诠释波函数,薛定谔试图以电荷密度来诠释波函数的绝对值平方,可并不成功。1926年,玻恩提出概率幅的概念,成功地诠释了波函数的物理意义。但是薛定谔与爱因斯坦观点相同,都不赞同这种统计或概率方法,以及它所伴随的非连续性波函数坍缩。爱因斯坦主张,量子力学是个决定性理论的统计近似。在薛定谔有生的最后一年,写给玻恩的一封信中,他清楚地表示他不接受哥本哈根诠释。

131 评论

小树旁的小树

你好,薛定谔方程是从自由粒子的波函数(复数形式)服从的方程猜想出来的,请参阅《量子力学导读》(浙江大学出版社)薛定谔方程是用算符化方法建立起来的,当然不是数学的逻辑地推导出来的,但只要找到合适的数学工具,不仅薛定谔方程可以推导出来,而且可以推导出单粒子体系和双粒子体系的相对论波动方程,当然这方面的研究成果尚未有人发表.我对量子论与狭义相对论的结合问题很有兴趣,事实上,在德布罗意那里量子论跟狭义相对论是触合的,德布罗意公式就是二者结合的产物.狭义相对论跟量子论的分离是从薛定谔那里开始的,克莱因和戈登沿着薛定谔的道路走下去,并试图纠正薛定谔对相对论的偏离,建立了相对论的克莱因-戈登方程,虽然此方程是有用的,但由于存在负几率困难,他们的工作没有成功.狄拉克继续沿此方向前进,他吸取了克莱因和戈登失败的教训,建立了著名的狄拉克方程,此方程竟然导出了电子的自旋,可惜只适用于单粒子体系.当他试图建立双粒子体系的相对论波动方程时,遇到很大困难,于是另擗途径,走量子场论的道路,在费曼等人的努力下,量子电动力学获得极大的成功.虽然量子场论的一般理论一度受到怀疑,由于杨-米耳斯场的引进,以及很多人的努力,弱电统一理论成功建立,使量子场论的成功达到了顶点.最近又有报到称量子场论的量子色动力学也取得了重大进展.因此,狭义相对论与量子论在量子场论中结合得如此成功,很自然使人们觉得在量子力学的框架内不可能使狭义相对论与量子论结合起来.但既然沿着薛定谔的道路即算苻化方法能建立起狄拉克方程,为什么就不能进一步沿此方向建立起双粒子体系的相对论波动方程呢?只要找到合适的数学工具并进行概念上的突破,就一定能实现这个目标.总之,量子论与狭义相对论一点都不矛盾,不仅在德布罗意那里,在狄拉克那里,在量子场论那里结合得很好,在量子力学的框架内也一定能结合起来,只要我们找到合适的数学工具.在我发表这个贴子的时侯,这样的数学工具其实我早已找到,并且已经建立了双粒子体系的相对论波动方程

154 评论

五堂宅修

从经典力学是推不出来的, 薛定谔方程是量子力学最基本的方程。 采用费曼的路径积分理论或者海森堡的矩阵力学,那么可以从量子力学导出薛定谔方程的。有时间,我帮你写写。

163 评论

杜拉拉candy

薛定谔方程(Schrodinger equation)在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当,超弦理论试图统一两种理论。薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,其正确性只能靠实验来确定。

277 评论

相关问答

  • 非线性薛定谔方程毕业论文

    猜是猜不出这个方程的,如果说是建立,那根据什么建立呢?他应该是从一个普通的波动方程(机械波和电磁波),和德布罗意关系这两个条件凑出来的。普通的波动方程里面有用到

    竹径通幽处 5人参与回答 2023-12-08
  • 线性方程组论文答辩

    令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关,若存在不全为零的系数,使得线性组合为零,则该向量组线性

    定州人民 3人参与回答 2023-12-06
  • 非齐次线性方程组毕业论文

    非齐次线性方程组,其常数项(即不含有未知数的项)不全为零的线性方程组,如:x+y+z=12x+y+z=3x+2y+2z=4齐次线性方程组,常数项全部为零的线性方

    zoemai0505 3人参与回答 2023-12-10
  • 非线性方程求根的迭代法研究论文

    原方程化为e^x=2-x^2,利用函数图象知只能有一个正根。两边同时取自然对数,x=ln(2-x^2)故迭代格式为X(n+1)=ln[2-(Xn)^2](因为该

    小小织女星 3人参与回答 2023-12-10
  • 浅谈线性方程组本科毕业论文

    线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在

    小二2004 3人参与回答 2023-12-06