TINA敏敏敏
非齐次线性方程组,其常数项(即不含有未知数的项)不全为零的线性方程组,如:x+y+z=12x+y+z=3x+2y+2z=4齐次线性方程组,常数项全部为零的线性方程组 ,如:x+y+z=02x+y+z=0x+2y+2z=0
非你莫属88
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
家有一宝C
非齐次线性方程组Ax=b的求解方法:1、对增广矩阵作初等行变换,化为阶梯形矩阵;2、求出导出组Ax=0的一个基础解系;3、求非齐次线性方程组Ax=b的一个特解(为简捷,可令自由变量全为0)4、按解的结构 ξ(特解)+k1a1+k2a2+…+krar(基础解系) 写出通解.注意:当方程组中含有参数时,分析讨论要严谨不要丢情况,此时的特解往往比较繁.【分析】按照非齐次线性方程组的求解方法一步一步来解答对增广矩阵作初等行变换,化为阶梯形1 -1 1 -1 10 0 -2 2 -10 0 0 0 0r(A)=2,基础解系的解向量有4-2=2个令x2=1,x4=0,得x1=1,x3=0 令x2=0,x4=1,得x1=0,x3=1 得到基础解系a1=(1,1,0,0)T a2=(0,0,1,1)T再求方程组的一个特解令x2=x4=0,得x1=1/2,x3=1/2 ξ=(1/2,0,1/2,0)T所以通解为 ξ+k1a1+k2a2,k1,k2为任意常数newmanhero 2015年1月18日11:33:17希望对你有所帮助,
社区的概念参考了几个不同版本的关于社区基本理论的书之后我发现一个有趣的现象,在出版年代相对早的书中,综合多位中外社会学家的观点之后往往会得出这样得结论,即社区的
猜是猜不出这个方程的,如果说是建立,那根据什么建立呢?他应该是从一个普通的波动方程(机械波和电磁波),和德布罗意关系这两个条件凑出来的。普通的波动方程里面有用到
令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关,若存在不全为零的系数,使得线性组合为零,则该向量组线性
非齐次线性方程组,其常数项(即不含有未知数的项)不全为零的线性方程组,如:x+y+z=12x+y+z=3x+2y+2z=4齐次线性方程组,常数项全部为零的线性方
原方程化为e^x=2-x^2,利用函数图象知只能有一个正根。两边同时取自然对数,x=ln(2-x^2)故迭代格式为X(n+1)=ln[2-(Xn)^2](因为该