• 回答数

    3

  • 浏览数

    199

肥肥来了啊
首页 > 学术期刊 > 数学论文高中的论文开题报告

3个回答 默认排序
  • 默认排序
  • 按时间排序

于海丽888

已采纳

数学研究生开题报告

导语:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。下面和我一起来看数学研究生开题报告,希望有所帮助!

论文题目:高中数学研究性学习的实践探索

一、选题背景

随着社会的发展,人们深刻地认识到,想要一个国家向前不断的迈进,其源源不竭的动力就来源于一种精神,即创新精神。新一轮有关基础教育的课程改革中,我们国家教育部出台了有关以全面推进素质教育为目的的深化教育改革的文件,其明确地提出了要符合当今时代的发展要求,注重对学生个性的发展,以培养学生的创新性精神和实践性能力作为其重点内容。

经过十年的实践,对课程的改革取得了明显的效果,并且为了贯彻落实《国家中长期教育改革和发展规划纲要》,适应新时期全面实施素质教育的要求,我们国家教育部专家对义务教育阶段各个学科的课程标准进行了修订和完善,新增了创新意识作为关键词,将创新意识的培养作为了现代化教育的基本任务。而研究性学习是我国基础教育课程的重大突破,是当前教育改革的重点和热点内容,也是当今国际上比较普遍认同和实施的一种新的学习方式,对于调动学生的积极主动性、培养学生的创新性精神和实践性能力,开发学生的内在潜力,具有重要的价值意义。

国外对研究性学习的研究可追溯到苏格拉底,他将教师比喻为“知识的产婆”,并在教育方面做出的重大贡献是提出了要注重启发学生学习与思考的方法。从18世纪起,研究性学习就得到人们的广泛认识。18世纪末到19世纪,法国启蒙学者卢梭提出了要遵循着人类的天性发展。继卢梭之后,著名的教育家裴斯泰洛齐提出了“教育心理化”,他倡导在活动过程当中,要对儿童内在的能力得以培养和发展的同时,还要注重儿童的心理发展特点以及儿童之间的个别差异性;他们的思想都为今天的研究性学习奠定了一定的思想基础。

在20世纪左右,美国的杜威、克伯屈等人在这方面同样进行了研究,影响最大的是美国着名哲学家、教育家杜威,他主张“从做中学”,认为学生仅仅通过教师讲解或者看书所获取的知识都是虚无飘渺的,只有通过“活动”获取的知识才是实实在在的知识、才能真正的促进学生的身心以及未来发展。在20世纪中期,布鲁纳提出了认知发现学习理论。他认为学生非被动的接受知识,而应该主动的去探究知识;施瓦布也提出了“探索研究性学习”,他倡导通过探索研究来进行对所学知识的掌握,从而使得学生探索研究的能力得以发展。

二、研究目的和意义

21世纪初,新一轮的基础教育课程改革由教育部正式的开启了,将“研究性学习”融入高中必修课之中,以此,作为我国高中课程改革的一项重大举措。从此之后,“研究性学习”成为我国基础教育变革当中一门独树一帜的课程,它掀开了基础性教育的新一页,无可置疑,它已成为我国当前课程变革中最吸引眼球的一项举措。

在高中数学的学习过程中安排了研究性学习课程,不但对于学校构建符合素质教育思想和迫切需要的新型人才培养模式是一种突破性的改革,而且还可以丰富教学模式,从而使得教师和学生在知识、技能、实践等方面更上一层楼。

具体来讲:

第一,有作用于课程的变革。革新到目前为止,研究性学习已经不言而喻地成为了我国基础教育课程变革的突出点。作为一门基础学科的数学,它是中小学革新的龙头,所以开展数学研究性学习对于课程的变革具有重大的意义与价值。

第二,有作用于教师教学方式的变革。教育文件提出了要注重对教师由强硬灌输到鼓励、引导等教学方式进行转变。

第三,有作用于学生学习方式的革新。教育出台了有关在课堂中,针对学生死记硬背进行变革的文件,具体内容为不仅要倡导学生自己积极参与、还要培育学生获取未知知识的能力、分析和解决问题的能力,收集和处理信息的能力以及与人沟通交流的能力等。因此,怎样让学生从被动的学习方式变更为积极主动探索的学习方式,成为教育一线工作者乃至科学家们进行研究性学习研究的重要原因。

三、论文研究涉及的主要理论

数学研究性学习是指学生在数学教师或者相关学科教师的指引下,从各类学科以及实践活动中选取并设定为研究性学习的课题,运用类似于数学学科的科学研究方法去积极主动的获取数学知识、并应用数学知识来解决相关问题,使得学生对数学知识把握的同时,体验、了解、学会和应用数学学科所蕴含的研究方法,以及对学生科学精神的培养以及科研能力发展的一种学习方式。

在数学研究性学习的实施过程当中,学生不仅明确地了解了活动的程序,还深深地体会到数学这门学科所带给人们的奇妙之处,更加关键的是改变了学生学习的传统思维模式,培育了学生独立自主的学习能力、勇于探索的科学精神以及相互协作的团队意识。其活动过程的实施,对于传统的教师模式也提出了一定的挑战,具体来讲,就是教师主要起着指路人的'作用,对学生活动过程中的具体表现给予适时的正确评判,督促学生有效的完成各个阶段的活动任务,从而使学生的主动性得以充分调动。

四、论文研究的主要内容及研究框架

由于没有研究性学习的具体教材做支撑,那么,对于一线教师而言,确定研究性学习内容是十分困难的事情,但是我们知道类比方法可以引出很多的内容,从中可以启发我们通过研究性学习相关理论的学习,运用类比的方法,从如下两个不同层次进行研究性学习的实践探索,分别为从三角形到四面体已知类比开展的研究性学习活动作为层次一;

从三角形角平分线和旁切圆半径的不等式分别类比到四面体以获得四面体中新成果为目的所开展的研究性学习活动作为层次二。

并且层次一从活动的组织与安排、资源的收集、分析与利用以及三角形与四面体已知形式与证法的类比情况等方面都为层次二做了一定的铺垫,而层次二也是对层次一的升华。

具体针对层次一开展研究性学习实践探索的研究思路,简要地做如下介绍:

第一,让学生从已学过到的有关三角形与四面体的已知知识中选定研究课题;

第二,通过指导教师提供有关研究性学习活动方案的一般步骤作为参考,引导学生完成该课题活动方案的设定;

第三,在本层次中,由于学生可以通过收集、分析信息,采用小组合作的学习方式完成该课题的研究,因此具体活动实施根据每组情况在课后完成;

第四,每个小组选取代表针对于小组成员的参与程度、取得的主要成果、得到的新猜想、没有解决的问题等进行相关汇报;

最后,针对每组出现的问题,进行组间与师生间的相互交流,从而完善课题以及深化课题。

针对层次二的第一个课题开展研究性学习实践探索的研究思路,简要地做如下介绍:第一,由指导教师提供给学生有关三角形内角平分线的两个不等式,通过文献的检索与查新,确定到目前为止其对应在四面体中仍没有被研究,从而将其确定为所研究课题的背景;

第二,根据课题背景,帮助学生选定研究课题为三角形角平分线的两个不等式到四面体二面角平分面不等式的推广;

第三,通过师生间的共同分析,从而确定活动的目标与重难点;

第四,将对课题内容感兴趣以及数学成绩优异的学生组成活动兴趣小组来开展研究性学习;

第五,收集、学习、研讨三角形中不等式的主要5种证法,深刻的领会其证明思路、相关内容与研究方法;

第六,广泛收集并学习四面体中有关的理论知识,为接下来开展研究工作做好充分的准备;

第七,利用类比猜想出四面体中相应不等式的形式;

第八,通过指导教师的引导,并利用类比尝试给出四面体中相应不等式的证明过程。

层次二的第二个课题所开展的研究性学习实践探索与本层次第一个课题相类似,所以由学生尝试着独立地去完成,指导教师进行适当的指导。

五、写作提纲

第一章绪论

研究背景

研究目的

研究思路

第二章研究性学习理论的相关概述

研究性学习的相关概念

研究性学习的特点

研究性学习的目标

数学研究性学习课题的选取

数学研究性学习的实施

类比与数学研究性学习

第三章以三角形到四面体已知类比开展研究性学习

学情与目标分析

学习活动设计

第四章以三角形到四面体类比开展研究性学习获得创新成果

从三角形角平分线到四面体二面角平分面类比开展研究性学习

从三角形旁切圆半径到四面体旁切球半径类比开展研究性学习

第五章结语

研究的基本结论

研究的主要反思

六、目前已经阅读的主要文献

[1]着,单墫译.几何不等式[M].北京:北京大学出版社.1999:77.

[2]陆高原.研究性课题选择的策略[M].上海:上海大学出版社,2000(11):20.

[3]沈文选.单形论导引--三角形的高维推广研究[M].长沙:湖南师范大学出版社,2000:35.

[4]应俊峰.研究型课程[M].天津:天津教育出版社,2001:44.

[5]中华人民共和国教育部.基础教育改革纲要(试行)[M].北京:人民教育出版社,2001:1-24.

[6]王升.研究性学习的理论与实践[M].北京:教育科学出版社,2002:155-161.

[7]霍益萍.让教师走进研究性学习[M].南宁:广西教育出版社,2002:4.

[8]李伟明.研究性学习案例集[M].桂林:广西师范大学出版社,2002:42.

[9]匡继昌.常用不等式[M].济南:山东科学技术出版社,2004:40-105.

[10]杨路,张景中.预给二面角的单形嵌入nE的充分必要条件[J].数学学报,1983,26(2):250-254.

[11]苏化明.预给二面角的单形嵌入nE的充分必要条件的一个应用[J].数学杂志,1987(1):10-13.

[12]杨世国.单形的构造定理[J].数学季刊,1991,6(4):102-103.

[13]苏化明.关于单形二面角平分面面积的不等式[J].数学杂志,1992(3):315-318.

[14]苗国.四面体的五“心”重心、外心、内心、旁心、垂心[J].数学通报,1993(9):21-24.

[15]林祖成.关于n维单形的一类不等式[J].数学的实践与认识,1994(3):50-56.

[16]王庚,杨世国.预给二面角的单形在nE中的嵌入[J].安徽师范大学学报(理科版),1994,17(4):11-16.

[17]李永利.关于四面体的两个不等式[J].数学通讯,2001(9):30-31.

[18]王建华.从三角形到四面体-类比与推广思维的一个尝试[J].中学生数学,2002(8):3-4.

[19]杨世国.关于内接单形的一个不等式[J].数学杂志,2003(2):218-220.

[20]陈安宁.关于对学生“问题意识”的培养[J].九江师专学报(自然科学版),2003(5):35.

[21]钱旭升.我国研究性学习的研究综述[J].教育探索,2003(8):22.

261 评论

佳丽子伊

一般包括下面的内容 一、课题来源(如属导师或本人主持、参加的课题,注明课题名称、来源、起止时间等) 二、选题的国内外研究现状及水平、研究目标及意义(包括应用前景、科学意义、理论价值)以及主要参考文献 三、研究的主要内容、研究方案及准备采取的技术路线、拟解决的关键问题 四、已进行的科研工作基础和已具备的科学研究条件(包括已经取得的科研成果、已经完成的科学实验及调查研究、具备的主要仪器设备及资料与数据等),以及可行性分析 五、课题研究起止年限、任务安排、分阶段要求和预期结果

172 评论

飞毛腿0615

数学系开题报告范文

开题报告是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家整理的数学系开题报告范文,欢迎阅读。

课题名称: 实积分与复积分的比较研究

一、课题的来源及意义

通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。

积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的意义。

二、国内外发展状况及研究背景

国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的`完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。

三、课题研究的目标和内容

通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。

(1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。

(2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。

(3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。

四、本课题研究的方法

课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。

五、课题的进度安排:

第一阶段:搜集资料,确定选题范围,联系指导老师(20XX秋1--7周)

第二阶段:选定题目、填写开题报告,准备开题 (20XX秋8--12周)

第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20XX秋13周--20XX春6周)

第四阶段:撰写初稿、在指导老师的指导下修改论文 (20XX春7--14周)

第五阶段:提交论文,准备答辩,论文总结 (20XX春15--16周)

六、参考文献

[1] 钟玉泉. 复变函数论[M]. 第3版.北京:高等教育出版社,2004

[2] 华东师范大学数学系. 数学分析[M].第3版.高等教育出版社,2001

[3] 四川大学数学系. 高等数学(第4册)[M].北京:高等教育出版社,2002

[4] 严子谦, 等. 数学分析(第一册)[M].北京:高等教育出版社,2004

[5] 孙清华, 赵德修. 新编复变函数题解[M]. 武汉:华中科技大学出版社,2002

[6] 王仲建. 实积分与复积分的联系与区别[N]. 陕西教育学院学报,1995,25:73-79

[7] 完巧玲. 利用复积分计算实积分[N]. 菏泽学院学报,2010,32(2):1673—2103

[8] 李敏,王昭海. 巧用复变函数积分证明实积分[J]. 数学教学与研究考试周刊,2009,41

[9] 金云娟. 解析函数唯一性定理在复积分上的应用[N]. 丽水学院学报,2009,31(5)

[10] 崔冬玲. 复积分的计算方法[J]. 淮南师范学院学报,2006,3:6-9

217 评论

相关问答

  • 高中三角函数毕业论文开题报告

    毕业论文开题报告示例如下: 选题的目的及意义 选题的目的:平面广告设计对于平面广告传播及其效果具有重要影响特点在于围绕视觉形式动力进行设计,强调平面广告设计吸引

    花花only 3人参与回答 2023-12-07
  • 中学数形结合论文开题报告

    数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,也就是对题目中的条件和结论既分析其代数含义又挖掘其几何背景,在代数与几何的结合上寻找解题思路。实现

    Xzylongfeng 2人参与回答 2023-12-09
  • 高等代数论文开题报告

    数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将

    ronghuiguantong 4人参与回答 2023-12-12
  • 高中科技论文开题报告

    第一条 开题报告是工程硕士生论文阶段工作的重要环节,为规范和统一工程硕士开题报告材料,现对其内容和格式做以下说明,请工程硕士生按此撰写。第二条 工程硕士生在公开

    bingdaoyu16 3人参与回答 2023-12-11
  • 论文开题报告高考导数

    1、本课题研究的现状。 2、本课题研究的内容。 3、本课题研究的意义。 选题意义和目的一般作为开题报告里面的第一块内容,是阐述你所研究的这个选题有没有专研究价值

    玉米卧熊 5人参与回答 2023-12-09