吹吹再吹
作为一名默默奉献的教育工作者,时常需要编写说课稿,借助说课稿可以更好地组织教学活动。那么什么样的说课稿才是好的呢?下面是我为大家收集的《圆柱的表面积》优秀说课稿模板,欢迎大家分享。
一、说教材
(一)教学内容
《圆柱的表面积》是九年义务教育小学数学六年级下册(人教版)第21~22页例3例4,第22页“练一练”,练习六第1~3题的教学内容。
(二)教材分析
这部分内容是在学生已经探索并掌握圆柱的基本特征的基础上教学的。同时,此前对圆面积公式的探索以及对长方体特征和表面积计算方法的探索也为了学习本课内容奠定了知识的基础。通过本节课的学习,有利于学生进一步完善关于几何形体的知识结构,丰富学生“空间与图形”的学习经验,形成初步的空间观念,为今后进一步学习形体知识打下基础。
教材设置了两个例题。例3主要引导学生通过动手操作探索圆柱侧面积的计算方法。然后,通过相应的“练一练”对圆柱侧面积的计算方法进行巩固。例4是引导学生在例3的基础上探索圆柱表面积的计算方法。
教材这样安排,意在让学生经历圆柱侧面积、表面积计算方法的推导过程,理解这些方法的来源,便于学生在理解的基础上记忆,并从中学到一些数学方法。
(三)教学重、难点本节课的教学重点是掌握圆柱的侧面积、表面积的计算方法,难点是理解圆柱侧面积的含义。
(四)教学目标根据本节课教学内容以及学生的特点,我制定了本课节的教学目标如下:
1、知识目标:理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积、表面积的计算方法,能利用所学知识解决相关的一些简单实际问题。
2、能力目标:初步学会运用“观察、比较、分析、抽象、判断、概括、推理”等方法获得知识的能力。
3、情感目标:让学生通过自己的操作,观察、比较、推理、归纳等经历知识形成的过程,从而获得成功的喜悦,增强学生的学习兴趣和自信心。
二、说教法和学法
小学生知识的形成总是经历由感性认识到理情认识的过程,因此教师在教学新知识时,应尽量为学生提供充足的、较为完整的感性材料,通过让学生操作、观察、演算等途径,调动眼、口、手、脑、耳等多种感官参与知识活动。基于这样的认识,这节课我采用演示法、操作实验法、引导发现法、练习法等教学方法,让学生通过操作、观察、概括、归纳、演算、交流等多种方法进行学习,掌握求圆柱表面积的计算方法及应用计算方法解决实际问题。
三、说教学过程
(一)操作导入,建立新旧知识联系点。
学生以前学的面都是“平面”,而圆柱的侧面是“曲面”,是本课教学难点,为了突破这个难点,这个环节我分3步进行教学。
1、卷一卷,感知“由直变曲”。
首先,我让学生拿出事先准备好的长方形纸片,引导他们卷成尽可能粗的圆柱纸简。
其次,提问:原来长方形纸片是一个平面;现在卷成圆柱纸简后,它还是平面吗?让学生感知“由直变曲”。
然后,我根据学生回答谈话:在一定的条件下平面是可以“由直变曲”的
2、展一展,感知“由曲变直”。
首先,我让学生展开卷好的圆柱简。
其次,提问:这个尽可能粗的圆柱纸简展开后是什么形状?让学生感知“由曲变直”。
然后,谈话:同样,在一定条件下曲面也可以“由曲变直”变为平面。
3、谈话引入:今天我们将运用这个知识来计算圆柱的侧面积与表面积。(板书课题:圆柱的表面积)
通过这个环节的卷、展操作,让学生感知圆柱的侧面“由曲变直”的过程,使得“圆柱侧面积”的新知识与“求长方形面积”的旧知识联系起,突破了教学的难点。
(二)观察对比,推导圆柱侧面积计算公式。
这个环节,我将分两步进行教学
1、观察对比,理解圆柱侧面积含义
首先,我让学生再次卷出尽可能粗的圆柱纸简。
其次,提问引导学生观察对比。
(1)原来长方形纸片的长现在在么地方?宽呢?现在长方形纸片卷成圆柱简后变成圆柱的什么面?
并且根据学生回答板书。
长方形 长 宽
圆柱侧面 表面周长 高
(2)谁能指出这个圆柱简的两个表面?(现在是空的)
一、说教材:
圆柱表面积的计算是九年义务教育六年制小学数学第十二册第二单元的学习内容,应当在学生掌握了长方形以及圆的面积计算的基础上进行教学。这部分内容的学习为后面学习一些立体几何知识打下基础。
二、说 目标:
根据《数学课程标准》的理念学生的学习目标应将知识与技能、过程与方法、情感态度与价值观这三方面融为一体,为了落实这几点,本节课我们的教学目标制定如下:
1、知识与技能。
通过想象和操作等活动,加深对圆柱特征的认识,理解圆柱表面积的的含义,知道圆柱的侧面展开后可以是一个长方形。
2、过程与方法。
学生通过触摸、观察、操作等多种方法提高分析、概括的能力,理解空间观念,并能利用知识合理灵活地分析、解决实际问题。结合具体的情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
3、情感态度与价值观
让学生亲身体验到数学活动充满着探索性和挑战性,通过自主探索和合作交流,使他们敢于发表自己的见解,能够从交流中获益。通过学生们自己的认识来制定教学目标符合学生学习数学的认知规律,让他们亲身经历问题的解决过程,提高他们对问题的感性认识,经过一系列的实践和计算,提高他们对问题的理性认识。能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中的一些简单的实际问题,体会数学与生活的联系;培养学生的观察、操作、想象能力,发展学生的空间观念,渗透转化的思想。也可以培养学生良好的个性品质,包括大胆猜想勇于探索的创新精神,顽强的学习毅力等。
三、说 重点与难点:
圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的基础。所以本课的重点是:探索圆柱体侧面积、表面积的计算方法,并能运用圆柱侧面积和表面积的计算方法解决生活中的一些简单的实际问题。
由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:理解圆柱侧面展开的多样性,将展开图与圆柱的各部分联系起来,并推导出圆柱体侧面积和表面积的计算公式。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。
四、教学目标:
为了更好的突出重点突破难点并遵循学生为主体,教师为主导的教学原则,要按照学生从感性认识到理性认识、从特殊到一般的认识规律,遵循启发式引导学生展开思维、探究证明思路、循序渐进的教学方法,最大限度提高学生的参与率。这样的教学方法主要是让学生主动、自觉地学习,让他们在学习中学会学习,这实际上式交给了学生自由飞翔的翅膀,交给了他们点石成金的金指头。
五、说 方法:
在本课的学习活动中注重培养学生的空间观念、想象力、动手操作能力、探索能力和推理概括能力。所以学生的学法以学生自备的圆柱形纸盒、长方形纸、剪刀等学具为载体,在老师的引导下进行学习活动。学习活动以小组共同探索、交流讨论、合作学习为主要形式,教师适时进行点拨,创设平等、自主、和谐的教学环境,通过学生的动手操作、观察、比较、推理、概括等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。在活动中获得成功的体验,从而培养学生学习数学的兴趣,得到人人学有价值的数学这个目的。
六、说 过程:
在我们的课堂教学中我们应以学生的发展为本,以学生的活动为主线,让学生充分的参与到课堂活动中来,为了落实这几点,我按以下四个阶段完成本课。
(一)温故而引新,巧妙入境。
这个过程我展示3个方面的复习内容:
(1)我知道圆柱的特征是
(2)圆的周长怎样计算?圆的面积又是怎样计算的呢?说一说,并用字母表示出来。
(3)你知道长方形的面积怎样计算吗?
以上设计让学生逐题完成,通过个人汇报集体评价的形式来进行。让学生在复习中进一步掌握圆柱的特征,回顾圆的周长和面积的.计算方法及长方形的面积的计算方法。这些知识完全与圆柱的侧面积和表面积的计算有关,为下一步探索圆柱的侧面积和表面积计算方法作好铺垫,同时也让学生领会到新旧知识之间的联系,充分体现数学知识的前后连贯性。
(二)设置悬念,创设探究情境,激发学生的探究欲望,引出本课的探究主题。
在此我用富有激励性的语言来引导学生:
请你拿出自己准备的圆柱形纸盒,这是我给大家准备的一个模型,现在我请大家帮助我设计一个你手中的模型一样的圆柱形纸盒,你能告诉我你需要多大面积的纸吗?(让学生沉思一会儿后请学生起来汇报,发表自己的意见,根据学生的回答,慢慢引导学生理解这实际上是求圆柱的表面积,然后引导学生分别说一说自己对圆柱表面积的认识。)
你知道圆柱的表面积指的是什么吗?(这样通过说一说让学生理解圆柱的表面积的含义,进而引出新课,揭示课题。)
这就是我们今天研究的主题《圆柱的表面积》。
这样设计让学生明白探究的必要性,让学生明确探究目的和探究方向,同时又具有挑战性,能激发学生的探究兴趣。
(三)动手操作,合作研究,汇报交流,发现联系,总结方法。
1、动手操作。
你知道圆柱的侧面是个什么面吗?你能想办法让它成为我们认识的图形吗?请你用手中的长方形纸、剪刀动手做一做,试试看。
让学生自己动手进行尝试,教师进行巡视、引导和点拨,通过学生动手将圆柱的侧面展开成平面图形的过程(比如让学生想办法把圆柱的侧面展开,或者用长方形纸卷成一个圆柱的侧面,或用大卷的塑料胶带做演示),来感受化曲为直的思想,获得直观的感受。
2、合作研究。
如果沿着圆柱的一条高把圆柱的侧面展开,会得到什么图形呢?请你和你的同伴说说看。
3、汇报交流。
让学生把自己的展开结果展示给大家看。
4、进行推理,总结方法。
引导学生通过测量圆柱底面周长和侧面展开后得到的长方形的长或用彩色笔做记号的方法,让学生自己分析出圆柱的底面周长和侧面展开成的长方形的长之间的关系。然后引导学生进行概括总结:你知道长方形的面积怎样计算吗?那么圆柱的侧面积又是怎样计算的呢?
因为有了上述的探究过程,学生很自然而然的就会概括出圆柱的侧面积的计算方法:底面周长乘高,也就是圆的周长乘高。学生概括出公式以后让学生写下来,并读一读,用黑板展示出来。然后让学生思考:要求圆柱的侧面积需要知道哪些条件呢?
引出例1:已知一个圆柱的底面直径是,高是,求它的侧面积。(得数保留两位小数)
5、归纳新知。
你现在知道怎样求圆柱的表面积了吗?先自己写出你的研究结果,再和同伴交流交流,然后向大家展示你的成果,让大家分享你的成功
通过独立思考同伴交流全班汇报总结公式来完成。(这一环节,使学生动手、动口、动脑等多种感官参与活动,做到了在动手操作中发现,在合作中学习,在交流中成长,这样能够更好的突破难点。)完成后让学生动手根据自己探究的结果完成例2。
6、联系生活,巩固练习,培养能力。
这一环节是巩固内化空间基础知识,培养拓展空间思维,形成学生对空间的感受能力,学习关于空间几何一些简单知识点的重要环节。因而我设计的练习题在注重知识运用的前提下,注意联系学生的生活实际,使学生能够把所学的知识运用于解决生活中的实际问题中。让他们感受到数学与生活的紧密联系数学来源于生活又作用于生活。这一过程我安排了课本上例3.让学生学会用数学知识解决生活中的实际问题,同时让学生明白在实际生活中计算圆柱的表面积时要具体问题具体分析,要结合实际进行计算,讲解进一法的意义和使用范围。
(四)全课总结,促进构建。
这是作为新课必要的一个环节,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣。结合板书,让学生说说本课学到的知识,并说出是怎样学到的。
这一环节的目的是让学生对本课所学的知识有系统的认识,培养学生整理知识的能力,引导学生总结学习方法,达到学会学习的目的。
小冷0623
数学日记[圆柱 数学日记 圆柱] 圆柱古槐街小学 六(2)班 邢思淼 不知不觉中,两周都已过去了,做为一名快要毕业的毕业生,我不禁 感慨万千。大家都在坚持不懈、锲而不舍地做一件事——坚持写周记!这 对大家来说,都是非常有益的,它不但可以帮助大家巩固所学的学习内容, 而且可以锻炼写作能力。 回顾前几天的学习生活,我不禁受益匪浅。 经过一个星期的学习,我们学习了求圆柱的侧面积、表面积、体积和 容积等知识。让我们再来回忆回忆我们所学的内容吧!首先想想圆柱有什么 名称:圆柱上下两个面叫圆柱的底面,围成圆柱的面还有一个曲面,叫做 圆柱的侧面,圆柱两个底面之间的距离叫做圆柱的高。 把圆柱的侧面 展开,可得到一个长方形,这个长方形的长等于圆柱的底面周长,长方形 的宽等于圆柱的高。这样我们很容易看出圆柱的侧面积等于底面周长乘高。 怎样求圆柱的表面积呢?把圆柱的表面全部展开,那么我们就看出它 像一个除号,圆柱的表面积等于圆柱的侧面积加上两个底面积。接下来又 要做题了,而且还是要求很麻烦的圆柱体表面积。唉,求表面积还真不容 易。需要求出底面积和侧面积,还得相加,稍不留神就会算错,有没有什 么好办法可以一块求完呢?我思考着。看看底面积和侧面积的公式吧! S 底=πr2,有两个底面,也就是 2πr2,再看看侧面积公式:S 侧=2πrh, 将它们两个相加在一起,提取同类项:2πr,利用乘法结合律,组成一个新 的公式:S 表=2πr(r+h)。一个新的公式从此诞生。有了这个公式只用相 乘一次就万事 ok 啦! 以前我曾经求过环形面积,运用了一个公式:S 环=π(R2-r2),仔细想想, 其实这也是公式的组合啊! 由两个圆相减, 提取共同的 π, 得到了新的公式。 这些新的公式的诞生都得归功于灵活的偷懒!如果不是觉得太麻烦, 其实也不会有这样的公式。其实,灵活的运用公式也是很重要的,有时候, 出题的人偷了一个懒,少说了一个条件,那么我们就可以多求一下。但是, 有的地方需要我们偷懒,不偷懒都不可以。 有这么一道题:在一个大正方形里有一个内切圆,大正方形的面积是 20 平 方厘米,求圆的面积。 如果按照常理,我们应该先求出大正方形的边长,也就是 d。然后再求 出 r,最后求出面积。可是,在这道题里,怎么才可以求出 r 和 d 呢?除非 开方,可是这样是很麻烦的,而且肯定求不尽,怎么办呢?这时候就需要 灵活的运用公式了。既然圆的面积公式是 πr2 那么求不出 r 求 r2 也可以呀! 这时候我们可以把它看作整体 a,也就是说,我们只用求出 aπ 就可以了。a 怎么求呢?正方形的面积应该是(2r)2,化简之后就是 4r2,也就是 4a 这 样呢我们就可以用 20÷4=5(cm2)求出 a,再用 5×π≈(cm2)。圆的面 积就约为 。这样,不用开方,也可以求出圆的面积 aπ。 有很多公式相互结合就可以组成一个简单方便的实用新公式。 只要创新,其实在把巨人们吃过的馒头揉在一起,做成一个新的花卷,那 不也是很好吗?
Rabbit公主
小学六年级数学《圆柱的表面积》课件篇一
一、教学目标:
1、首先带动课堂气氛
2、教会学生什么是面积。
3、学习圆柱体侧面积和表面积的含义。
4、能够求圆柱的侧面积和表面积的方法。
二、教学重点:
动手操作展开圆柱的侧面积
三、教学难点:
圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
四、教具准备:
圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
五、教学过程:
(一)、创设情境,引起兴趣。
出示:牛奶盒,纸箱,可比克。
提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)
(2)制作这些包装盒,至少需要多大面积的材料?(指名说)
师:谁能说说上一节课你学过圆柱体的哪些知识?
生:........
师:请同学们拿出你自制的圆柱体模型,动手摸一摸
生:动手摸圆柱体
师:谁能说一说你摸到的是哪些部分?
生:.......
师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积
(二)、探索交流,解决问题。
圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题)提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?
研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)(展开的形状可能是长方形、平行四边形、正方形等)
1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。
2.操作活动:
(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?
(2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流
3.小组交流能用已有的知识计算它的面积吗?
4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)
这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
板书:
长方形的面积=长×宽
↓↓↓
圆柱的侧面积=底面周长×高
所以,圆柱的侧面积=底面周长×高
S侧=C×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
(四)、练习
求圆柱的侧面积(只列式不计算)
1。底面周长是米,高是米
2。底面直径是2分米,高是45分米
3。底面半径是厘米,高是5分米
(五)研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)
2、动画:圆柱体表面展开过程
3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×24.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)
(六),巩固应用,内化提高
1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)
2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?
六、教学结束:
布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。
小学六年级数学《圆柱的表面积》课件篇二
教学目标
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长米,高米。
(2)底面直径4厘米,高10厘米。
(3)底面半径分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是分米,底面半径2分米,它的表面积是多少?(课件演示)
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×(平方分米)
(2)底面积:×2×2=(平方分米)
(3)表面积:(平方分米)
答:它的表面积是平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)
2计算下面各圆柱的表面积。
(1)底面周长是厘米,高分米。
(2)底面半径米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
小学六年级数学《圆柱的表面积》课件篇三
教学目标:
1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。
2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。
教学重点,难点:
掌握圆柱侧面积和表面积的计算方法。
运用所学的知识解决简单的实际问题。
教学过程:
一、引入新课:
前一节课我们已经认识了一个新朋友——圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗?
1.圆柱是由平面和曲面围成的立体图形。
2.圆柱各部分的名称(两个底面,侧面,高)。
3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。
二、探究新知:
以前我们学过正方体、长方体的表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积)
同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么?
教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。
板书:(圆柱的表面积=圆柱的侧面积+两个底面的面积)
1.圆柱的侧面积
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习二第5题
学生审题,回答下面的问题:
这两道题分别已知什么,求什么?
小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3.理解圆柱表面积的含义.
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4.尝试练习。
(1)求下面各圆柱的侧面积。
①底面周长分米,高分米。
②底面直径8厘米,高12厘米。
(2)求下面各圆柱的表面积。
①底面积是40平方厘米,侧面积是25平方厘米。
②底面半径是2分米,高是5分米。
5.小结:
在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。)
三、巩固练习。
1.做第14页“做一做”。(求表面积包括哪些部分?)
2.练习二第6,7题。
四、课后思考。
同学们想一想是不是所有的圆柱在计算表面积时都可以用
公式:圆柱的表面积=圆柱的侧面积+底面积×2来计算呢?
积极心理学是20世纪末兴起的一种心理学研究思潮,积极心理学 教育 理念是以积极的态度看待学生,重视学生潜能的激发,重视学生终身学习能力的培养,在学习过程中培
你的开题报告有什么要求?开题报告是需要多少字?你可以告诉我具体的排版格式要求,希望可以帮到你,祝开题报告选题通过顺利。1、研究背景研究背景即提出问题,阐述研究该
铜在一般环境下不会生成氧化亚铜的,因为氧化亚铜很容易被氧化,在溶液中亚铜离子就可以自身歧化反应变为铜离子和铜
我们曾学过长方体、正方体的表面积与体积的计算,掌握的都很清楚。今天,我又学了两个立体图形的表面积的计算,那就是圆柱与圆锥。掌握了这两个立体图形体积与表面积是如何
[说明文]国宝中华鲟