喬巴喬巴
牛顿插值法是插值法利用函数f(x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f(x)的近似值。
牛顿插值法相对于拉格朗日插值法具有承袭性的优势,即在增加额外的插值点时,可以利用之前的运算结果以降低运算量。牛顿插值法的特点在于:每增加一个点,不会导致之前的重新计算,只需要算和新增点有关的就可以了。
如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。
插值有点像拟合,通过拟合后的公式来计算缺失的点,但是拟合可能不会要求拟合的曲线一定要通过样本点,满足本身的指定的条件即可。插值在满足曲线穿过样本点的基础上可能还有其他的技术指标,单纯的穿过,分段线性插值即可。
qiaochu168
余项和基本原理都没啥区别,只是当增加第n+1个节点的时候。用牛顿差值方法的话前n项的式子不用变,再增加一个式子就行了。而用拉的差值方法的话要改变所有的式子(n+1个)。
liuyuecao110
三种插值方法的比较如下:
(1)拉格朗日插值评述
拉格朗日插值法无谓就是利用已知的个插值节点及其所在节点处的函数值,在每个插值节点处构造相应的插值基函数,再根据特定的线性关系将这个插值基函数进行线性组合,即得拉格朗日插值函数。
用几何的语言来描述这种方法就是将有限个点通过一条光滑的且与高度契合的次数不超过的函数来表示,其方法简洁明了,但是拉格朗日插值多项式在实际应用的过程中也暴露了本身存在的问题。如果对数据点的个数进行增加,那么原来我们所得的拉格朗日插值函数就毫无用处,必须从基函数构造重新开始整个过程。
在实际应用中节点的增减是特别普遍常见的,面临这种情况拉格朗日插值法就难免会面临较大的局限性,不仅会浪费时间,也会造成先前劳动力的浪费,这样就会极大的抑制大机器的生产,更加体现不出函数插值法的优化作用。
(2)牛顿插值评述
牛顿插值很好地解决了上述拉格朗日插值中的局限,即当增加节点时已得成果无法被利用的问题。牛顿插值法仅需在已有的多项式的基础上添加一项即可,这就很好的解决了上述拉格朗日插值方法所遇到的当增加节点时已得成果全部作废无法被继续使用的问题。
在日常实际问题解决过程中,利用有限个插值节点所构造的插值函数可能并不能达到我们所要求的插值精度。对于这个问题如果我们仅从增加插值节点个数这一方面来入手很可能会起到相反的作用。
(3)埃尔米特插值评述
通过对前面拉格朗日插值法和牛顿插值法的分析,我们可以很明显的观察到这两种插值方法的构造仅仅与插值节点以及插值节点处的函数值有关,并没有涉及到其它约束条件。但是如果插值条件不仅含有对节点处的函数值的约束,而且还增加对节点处的导数的限制,解决这一类问题的方法就要利用埃尔米特插值多项式。
对比上述拉格朗日插值方法和牛顿插值方法,埃尔米特插值具有较高的精度可以应用的领域更加宽泛,更加适应于实际问题的解决,所以在现实生活中也就凸现出高度的灵活性和适应性。
蝴蝶圆舞曲
一、性质不同1、牛顿插值:代数插值方法的一种形式。牛顿差值引入了差商的概念,使其在差值节点增加时便于计算。2、拉格朗日插值:满足插值条件的、次数不超过n的多项式是存在而且是唯一的。二、公式意义不同1、牛顿插值:牛顿差值作为一种常用的数值拟合方法,由于其计算简单、计算点多、逻辑清晰、编程方便等特点,在实验分析中得到了广泛的应用。特别是在实验中,当只能测量离散数据点或用数值解表示相应的关系时,可以用牛顿插值公式拟合离散点,得到更精确的函数解析值。2、拉格朗日插值:在许多实际问题中,函数被用来表示某些内部关系或规律,许多函数只能通过实验和观察来理解。如果实际观测到一个物理量,并在多个不同的地点得到相应的观测值,拉格朗日插值法可以找到一个多项式,它可以精确地提取每个观测点的观测值。扩展资料:拉格朗日插值的发现:在数值分析中,拉格朗日插值法是由18世纪法国数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法。在数学上,拉格朗日插值法可以给出一个多项式函数,它只通过二维平面上的几个已知点。拉格朗日插值法最早由英国数学家爱德华·华林于1779年发现,不久后(1783年)由莱昂哈德·欧拉再次发现。1795年,拉格朗日在《师范学校数学基础教程》一书中发表了这种插值方法,从此拉格朗日的名字就和这个方法联系在一起。参考资料来源:搜狗百科-牛顿插值公式参考资料来源:搜狗百科-拉格朗日插值法
豆浆煮菠菜
一、含义不同:
两者都是通过给定n+1个互异的插值节点,求一条n次代数曲线近似地表示待插值的函曲线,这就叫做代数插值;Lagrange插值代数和Newton法插值都属于代数插值的范畴。
Lagrange插值和Newton法插值的结果和余项都是一致的,因为都是利用n次多项式插值,所以一致。
二、计算不同:
Lagrange插值法是通过构造n+1个n次基本多项式,线性组合而得到的。而Newton法插值是通过求各阶差商,递推得到的一个f(x)=f(x0)+(x-x0)f[x0,x1]+(x-x0)(x-x1)f[x0,x1,x2]+(x-x0)(x-x(n-1))f[x0,x1,xn]这样的公式,代进去就可以得到。
牛顿插值法的特点在于:
每增加一个点,不会导致之前的重新计算,只需要算和新增点有关的就可以。
假设已知n+1n+1个点相对多项式函数ff的值为:(x0,f(x0)),(x1,f(x1)),(x2,f(x2)),(xn,f(xn)),求此多项式函数f。
先从求满足两个点(x0,f(x0)),(x1,f(x1))的函数f1(x)说起:
假设f1(x)=f(x0)+b1(x−x0)f1(x)=f(x0)+b1(x−x0),增加一个点,(x0,f(x0)),(x1,f(x1)),(x2,f(x2)),求满足这三个点的函数f2(x):
假设f2(x)=f1(x)+b2(x−x0)(x−x1)
以上内容参考:百度百科-牛顿插值法
牛顿插值法是插值法利用函数f(x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f(x)的近似值。
物理学是研究物质运动最一般规律和物质基本结构的学科,下面就是高中物理论文范文,欢迎大家阅读! 摘要 :物理规律教学是使学生掌握物理科学理论的中心环节,是物理教学
(一)经典力学是从伽利略和开普勒时代开始的,牛顿时代到达成熟阶段(二)1、开普勒 开普勒行星三定律:椭圆定律,等面积定律,和谐定律 2、伽利
地层面的拟合是多源地质建模中最为重要的步骤。无论是通过Delaunay细分方法增加节点还是通过网格分级增加的节点,都需要进一步求取其高程值。因此,必须借助插值方
请问《麦田里的守望者》?郑霍尔顿顶情绪。低落的最直接原因是什么?最直接的原因是什么?他,