• 回答数

    5

  • 浏览数

    358

丶沫小若
首页 > 学术期刊 > 关于共轭矩阵的博士毕业论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

我叫马三顺

已采纳

埃尔米特矩阵又称自共轭矩阵、Hermite阵。Hermite阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等(然而矩阵A的共轭矩阵并非Hermite阵)。

自共轭矩阵是矩阵本身先转置再把矩阵中每个元素取共轭得到的矩阵。Hermite阵主对角线上的元素必须是实数。对于只包含实数元素的矩阵(实矩阵),实对称阵是Hermite阵的特例。

扩展资料:

共轭矩作为正规阵,因此共轭矩阵不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组Cn的正交基。

n阶共轭方阵的元素构成维数为n2的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之上的元素有两个自由度。

参考资料来源:百度百科-共轭矩阵

274 评论

甜心小葡萄499

共轭矩阵又称Hermite阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等。埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称,即是ai,j=a*j,i。

324 评论

洁博利郑少波

共轭矩阵又称Hermite阵。Hermite阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是 ai,j=a*j,i。 对于 A = \{ a_{i,j} \} \in C^{n \times n} 有: a_{i,j} = \overline{a_{j,i}},其中\overline{(\cdot)}为共轭算符。 记做: A = A^H \quad 例如: \begin 3&2+i\\ 2-i&1 \end 就是一个Hermite阵。 显然,Hermite阵主对角线上的元素必须是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是Hermite阵。也就是说,实对称阵是Hermite阵的特例。 性质 若A 和B 是Hermite阵,那么它们的和A+B 也是Hermite阵;而只有在A 和B满足交换性(即AB = BA)时,它们的积才是Hermite阵。 可逆的Hermite阵A 的逆矩阵A-1仍然是Hermite阵。 如果A是Hermite阵,对于正整数n,An是Hermite阵. 方阵C 与其共轭转置的和C + C^*是Hermite阵. 方阵C 与其共轭转置的差C - C^*是skew-Hermite阵。 任意方阵C 都可以用一个Hermite阵A 与一个skew-Hermite阵B的和表示: C = A+B \quad\mbox\quad A = \frac(C + C^*) \quad\mbox\quad B = \frac(C - C^*). Hermite阵是正规阵,因此Hermite阵可被酉对角化,而且得到的对角阵的元素都是实数。这意味着Hermite阵的特征值都是实的,而且不同的特征值所对应的特征向量相互正交,因此可以在这些特征向量中找出一组Cn的正交基。 n阶Hermite方阵的元素构成维数为n2的实向量空间,因为主对角线上的元素有一个自由度,而主对角线之上的元素有两个自由度。 如果Hermite阵的特征值都是正数,那么这个矩阵是正定阵,若它们是非负的,则这个矩阵是半正定阵。 Hermite序列 Hermite序列(抑或Hermite向量)指满足下列条件的序列ak(其中k = 0, 1, …, n): \Im(a_0) = 0 \quad \mbox \quad a_k = \overline{a_} \quad \mbox k=1,2,\dots,n. 若n 是偶数,则an/2是实数。 实数序列的离散傅里叶变换是Hermite序列。反之,一个Hermite序列的逆离散傅里叶变换是实序列。

237 评论

依依0317

埃尔米特矩阵又称自共轭矩阵、Hermite阵。Hermite阵中每一个第i行第j列的元素都与第j行第i列的元素的共轭相等(然而矩阵A的共轭矩阵并非Hermite阵)。自共轭矩阵是矩阵本身先转置再把矩阵中每个元素取共轭得到的矩阵。

Hermite阵主对角线上的元素必须是实数。对于只包含实数元素的矩阵,如果它是对称阵,即所有元素关于主对角线对称,那么它也是Hermite阵。也就是说,实对称阵是Hermite阵的特例。

扩展资料:

推论:

1)n阶埃尔米特矩阵A为正定矩阵的充要条件是A的所有特征值大于0。

2)若A是n阶埃尔米特矩阵,其特征值对角阵为V,则存在一个酉矩阵U,使AU=UV。

3)若A是n阶埃尔米特矩阵,其弗罗伯尼范数的平方等于其所有特征值的平方和。

4)斜埃尔米特矩阵为A的共轭转置为-A,斜埃尔米特矩阵的特征值全是实数。更进一步,斜埃尔米特矩阵都是正规矩阵。因此它们是可对角化的,它们不同的特征向量一定是正交的。

298 评论

忘记高傲

以复数为元素的矩阵,其共轭矩阵指对每一个元素取共轭之后得到的矩阵。

154 评论

相关问答

  • 关于共价键的博士毕业论文

    结果相当的好,简直可以说是震惊了很多人了,这篇论文也是相当的有质量了,而且内容也非常的有深度。

    端木青烟 9人参与回答 2023-12-06
  • 矩阵分解毕业论文

    随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序

    傻傻的双子 4人参与回答 2023-12-09
  • 分块矩阵毕业论文

    你怎么也做分块矩阵的应用毕业论文??

    SmartGirl~~ 2人参与回答 2023-12-08
  • 毕业论文中的矩阵计算

    这种文体一般是先指出对方错误的实质,或直接批驳(驳论点),或间接批驳(驳论据、驳论证);继而,针锋相对地提出自己的观点并加以论证。驳论是跟立论紧密联系着的,因为

    兜里五块糖 3人参与回答 2023-12-05
  • 毕业论文矩阵的秩

    简单的说,是有用解的向量数。 ①比如回答多说:秩是阶梯型矩阵非0行的个数,为什么呢? 因为如果是0行(初等行变换后),0X1+0X2+0X3+0X4+0X5

    睡神熊猫 4人参与回答 2023-12-08