• 回答数

    3

  • 浏览数

    273

鑫方盛商城
首页 > 学术期刊 > 三角形论文范文

3个回答 默认排序
  • 默认排序
  • 按时间排序

岁月静好oO

已采纳

1证明一个三角形是直角三角形 2用于直角三角形中的相关计算 3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子能上去,地也没法用尺子去一段一段丈量,那么如何才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们能清楚地看到,我国古代的人民早在多少千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面多少何饿读者都清楚,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年第一发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则能确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便能得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 即: c=(a2+b2)(1/2) 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方; 即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 来源: 毕达哥拉斯树是一个基本的多少何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 文章来源: 原文链接: 满意请采纳

306 评论

moon黄月月

三角形全等的判定公理及推论有: (1)“边角边”简称“SAS” (2)“角边角”简称“ASA” (3)“边边边”简称“SSS” (4)“角角边”简称“AAS” (5 )“斜边直角边”简称“HL”(直角三角形)注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

262 评论

爱尔兰咖啡啊

我们已经具备了有关线的初步知识,转而探索具有更美妙更复杂性质的形。对于三角形,一方面要研究一个图形中不同元素(边、角)间的性质,另一方面要关注两个图形间的关系。两个图形关系的有关全等的内容,则是平面几何中的一个重点,是证明线段相等、角相等以及面积相等的有力工具。 那么如何学好三角形全等的证明呢?这就要勤思考,小步走,进行由易到难的训练,实现由模仿证明到独立推理、由实(题目已有现成图形)到虚(要自己画图形或需要添加辅助线)的升华。具体可分为三步走: 第一步,学会解决只证一次全等的简单问题,重在模仿。这期间要注意模仿课本例题的证明,使自己的证明格式标准,语言准确,过程简练。如证明两个三角形全等,一定要写出在哪两个三角形,这既方便批阅者,更为以后在复杂图形中有意识去寻找需要的全等三角形打下基础;同时要注意顶点的对应,以防对应关系出错;证全等所需的三个条件,要用大括号括起来;每一步要填注理由,训练思维的严密性。通过一段时间的训练,对证明方向明确、内容变化少的题目,要能熟练地独立证明,切实迈出坚实的第一步。 第二步,能在一个题目中两次用全等证明过渡性结论和最终结论,学会分析。在学习直角三角形全等、等腰三角形时逐步加深难度,学会一个题目中两次证全等,特别要学会用分析法有条不紊地寻找证题途径,分析法目的性强,条理清楚,结合综合法,能有效解决较复杂的题目。同时,这时的题目一般都不只一种解法,要力求一题多解,比较优劣,总结规律。 第三步,学会命题的证明,初步掌握添加辅助线的常用方法。命题的证明可全面锤炼数学语言(包括图形语言)的运用能力,辅助线则在已知和未知间架起一座沟通的桥梁,这都有一定的难度,切勿放松努力,前功尽弃。同时要熟悉一些基本图形的性质,如“角平分线+垂直=全等三角形”。证明全等不外乎要边等、角等的条件,因此在平时学习中就要积累在哪些情况下存在或可推出边等(或线段等)、角等。烂熟于心,应用起来自然会得心应手。

250 评论

相关问答

  • 全等三角形的应用的研究论文

    经过分析,三角形全等条件如下“SAS”也叫“边角边”,意思是两个三角形中,有两条边和他们的夹角对应相等时,这两个三角形全等;“SSS”也叫“边边边”,意思是两个

    墨迹墨迹小蜗牛 5人参与回答 2023-12-07
  • 三角形论文范文

    1证明一个三角形是直角三角形 2用于直角三角形中的相关计算 3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学著作——《周髀算经》的开头

    鑫方盛商城 3人参与回答 2023-12-09
  • 有关三角形内角和的论文题目

    1、生活中的数学 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不

    金威家具 6人参与回答 2023-12-08
  • 相似三角形论文知网

    1、首先,在网站搜索里输入“中国知网”,找到官网并进入。 2、可以直接点击“主题”右边的小三角形,会弹出下拉对话框,可以从下面的内容找到一些期刊,但如果有明确需

    糊涂妞呀 7人参与回答 2023-12-10
  • 相似三角形论文开题报告

    服装设计论文的开题报告 服装设计属于工艺美术范畴,是实用性和艺术性相结合的一种艺术形式。下面是我为大家整理的关于服装设计论文的开题报告,欢迎大家的阅读。 一、选

    Lookiamycm 4人参与回答 2023-12-08