可可poppy
对于第一类曲面积分,如果被积函数是1,则积分表示的几何意义就是曲面Σ的面积。如果被积函数不是1(当然也不能是0),则积分有它的物理意义,即曲面Σ的质量,被积函数就是其面密度函数。
TVB脑残粉
第一型曲面积分几何意义来源于对给定密度函数的空间曲面,计算该曲面的质量。
第一型曲面积分的几何意义:
表示以
为面密度的空间曲面S的“质量”,即将空间曲面S想象成一块光滑的(可微的)不折叠的(单值的)质量分布服从
的薄板,故
在S上的第一型曲面积分就是薄板的代数质量。
扩展资料:
曲面积分的物理意义简单的说第一类是光滑曲面型构件的质量,第二类是通过指定侧的流量。
二重积分,可以看做一个高函数f(x,y),在底面∑上的积分,所以他表示的是底面为∑的几何体的体积。
三重积分,可以看做一个密度函数f(x,y),在几何体V上的积分,所以他表示的是几何体V的质量。
第一类曲线积分,可以看做一个密度函数f,对曲线长度s的积分,所以他表示的是曲线s的质量。
第二类曲线积分,可以看做一个变力f,对曲线切向的积分,所以他表示的是变力f沿曲线做的功。
第一类曲面积分,可以看做一个密度函数f,对曲面面积S的积分,所以他表示的是曲面S的质量。
第二类曲面积分,可以看做一个磁场强度f,对曲面法向的积分,所以他表示的是的磁通量.物理上形象的说,就是通过某个曲面的磁感线条数...。
参考资料来源:百度百科-曲面积分
咖啡熊33
第一形曲线积分是线密度为f(x,y,z)的曲线的质量。第二形曲线积分是变力(P,Q)由将物体由物体由A移动到B所做的功。第一型曲面积分是面密度为f(x,y,z)的曲面的质量。第二性曲面积分是流速为(P,Q,R)通过某一曲面的流量
pan369247787
第一型曲面积分几何意义来源于对给定密度函数的空间曲面,计算该曲面的质量。
第一型曲面积分的几何意义:
表示以
为面密度的空间曲面S的“质量”,即将空间曲面S想象成一块光滑的(可微的)不折叠的(单值的)质量分布服从
的薄板,故
在S上的第一型曲面积分就是薄板的代数质量。
当动线按照一定的规律运动时,形成的曲面称为规则曲面;当动线作不规则运动时,形成的曲面称为不规则曲面。形成曲面的母线可以是直线,也可以是曲线。
如果曲面是由直线运动形成的则称为直线面(如圆柱面、圆锥面等);由曲线运动形成的曲面则称为曲线面(如球面、环面等)。
直线面的连续两直素线彼此平行或相交(即它们位于同一平面上),这种能无变形地展开成一平面的曲面,属于可展曲面。如连续两直素线彼此交叉(即它们不位于同一平面上)的曲面。
参考资料来源:百度百科-曲面积分
大萌的饰界
1、第一型曲面积分:又称对面积的曲面积分
定义在曲面上的函数关于该曲面的积分。第一型曲线积分物理意义来源于对给定密度函数的空间曲面,计算该曲面的质量。
2、第二型曲面积分是关于在坐标面投影的曲面积分,其物理背景是流量的计算问题。
第二型曲线积分与积分路径有关,第二型曲面积分同样依赖于曲面的取向,第二型曲面积分与曲面的侧有关,如果改变曲面的侧(即法向量从指向某一侧改变为指另一侧),显然曲面积分要改变符号,注意在上述记号中未指明哪侧。
必须另外指出,第二型曲面积分有类似于第二型曲线积分的一些性质。
3、数学上,对称性由群论来表述。群分别对应着伽利略群,洛伦兹群和U(1)群。对称群为连续群和分立群的情形分别被称为连续对称性和分立对称性。德国数学家威尔(Hermann Weyl)是把这套数学方法运用於物理学中并意识到规范对称重要性的第一人。
4、积分轮换对称性是指坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。
扩展资料:
1、对称操作:
当分子有对称中心时,从分子中任意一原子至对称中心连一直线,将次线延长,必可在和对称中心等距离的另一侧找到另一相同原子,即每一点都关于中心对称。依据对称中心进行的对称操作为反演操作,是按照对称中心反演,记为i;n为偶数时in=E,n为奇数时in=i
反轴:
反轴In的基本操作为绕轴转360°/n,接着按轴上的中心点进行反演,它是C1n和i相继进行的联合操作:I1n=iC1n; 绕In轴转360°/n,接着按中心反演。
映轴:
映轴Sn的基本操作为绕轴转360°/n,接着按垂直于轴的平面进行反映,是C1n和σ相继进行的联合操作: S1n=σC1n;绕Sn轴转360°/n,接着按垂直于轴的平面反映。
2、第一型曲面积分和第二型曲面积分的区别
1、第一类没方向,有几何意义和物理意义;第二类有方向,只有物理意义。
2、一类曲线是对曲线的长度,二类是对x,y坐标.例已知一根线的线密度,求线的质量,就要用一类.已知路径曲线方程,告诉你x,y两个方向的力,求功,就用二类.二类曲线也可以把x,y分开,一二类曲线积分之间就差一个余弦比例。
一二类曲面积分区别,一类是对面积的积分,二类是对坐标的.如已知面密度,求面质量,就用一类.已知x,y,z分别方向上的流速和面方程,求流量,就用第二类.同理,x,y,z方向也是可以分开的。
参考资料:百度百科-第一型曲面积分
参考资料:百度百科-第二型曲面积分
参考资料:百度百科-对称性
参考资料:百对百科-积分轮换对称性
橘子哈哈111
你好!答案如图所示:
这里先要注意一点:
第一类 曲线/曲面 积分 具有 偶倍奇零 性质
第二类 曲线/曲面 积分 具有 偶零奇倍 性质
所以这两类的 奇偶性 是相反的,因为第二类积分涉及方向性的问题
第一类曲线积分:
第二类曲线积分:
第一类曲面积分:
第二类曲面积分
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报
。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
如果问题解决后,请点击下面的“选为满意答案”
学习高等数学最重要是持之以恒,其实无论哪种科目都是的,除了多书里的例题外,平时还要多亲自动手做练习,每种类型和每种难度的题目都挑战一番,不会做的也不用气馁,多些向别人请教,从别人那里学到的知识就是自己的了,然后再加以自己钻研的话一定会有不错的效果。所以累积经验是很重要的,最好的方法就是常来帮别人解答题目,增加历练和做题经验了!
简析高等数学中的数学结构与数学理解【摘要】文章从分析高等数学的内容结构出发,代写论文 对数学结构与数学理解所起的作用,作了简单的剖析。【关键词】高等数学;数学结
2021年蔡徐坤的第一本杂志是《ELLE》。 蔡徐坤(KUN),1998年8月2日出生于浙江省温州市,籍贯湖南怀化,中国内地男歌手,原创音乐制作人,演员。 01
数学与生活 自从懂事以来,数学就已进入了我们的生活,数学无处不在影响着我们的生活,指引着智慧的方向,陪伴我们度过学习与成长的各个阶段。数学是一门给人智慧、让人聪
1.计算这道曲线积分的过程见上图。 2.曲线积分计算的第一步: 补AO,使L+AO成为闭曲线。 3.对曲线积分的补后的闭曲线部分,计算此曲线积分可以用格林公式。
1、论文题目:要求准确、简练、醒目、新颖。 2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录) 3、提要:是文章主要内容的摘录,要求短、精、完整。