哈毛小子
题目(黑体不加粗三号居中) 摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下) 首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。根据这些特点我们对问题1用……的方法解决;对问题2用......的方法解决;对问题3用……的方法解决。对于问题1我们用......数学中的......首先建立了......模型I。在对......模型改进的基础上建立了......。模型II。对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为......。,然后借助于......数学算法和......软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)对于问题2我们用......对于问题3我们用......如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。要注意合理性。此推广模型可以不深入研究,也可以没有具体结果。关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。注:字数700~1000之间;摘要中必须将具体方法、结果写出来;摘要写满几乎一页,不要超过一页。摘要是重中之重,必须严格执行!。页码:1(底居中)一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。篇幅建议不要超过一页。大部分文字提炼自原题。二、问题分析主要是表达对题目的理解,特别是对附件的数据进行必要分析、描述(一般都有数据附件),这是需要提到分析数据的方法、理由。如果有多个小问题,可以对每个小问题进行分别分析。(假设有3个问题) 问题1的分析对问题1研究的意义的分析。问题1属于......数学问题,对于解决此类问题一般数学方法的分析。对附件中所给数据特点的分析。对问题1所要求的结果进行分析。由于以上原因,我们可以将首先建立一个......的数学模型I,然后将建立一个......的模型II,........对结果分别进行预测,并将结果进行比较.问题2的分析对问题2研究的意义的分析。问题2属于......数学问题,对于解决此类问题一般数学方法的分析。对附件中所给数据特点的分析。对问题2所要求的结果进行分析。由于以上原因,我们可以将首先建立一个......的数学模型I,然后将建立一个......的模型II,......。。对结果分别进行预测,并将结果进行比较. ..............................。。三、模型假设(4号黑体)(以下小4号) 假设题目所给的数据真实可靠;2.3.4.5.6..................................... 注意:假设对整篇文章具有指导性,有时决定问题的难易。一定要注意假设的某种角度上的合理性,不能乱编,完全偏离事实或与题目要求相抵触。注意罗列要工整。四、定义与符号说明(4号黑体)(对文章中所用到的主要数学符号进行解释小4号)............................ 尽可能借鉴参考书上通常采用的符号,不宜自己乱定义符号,对于改进的一些模型,符号可以适当自己修正(下标、上标、参数等可以变,主符号最好与经典模型符号靠近)。对文章自己创新的名词需要特别解释。其他符号要进行说明,注意罗列要工整。如“~第种疗法的第项指标值”等,注意格式统一,不要出现零乱或前后不一致现象,关键是容易看懂。五、模型的建立与求解(4号黑体)第一部分:准备工作(4号宋体)数据的处理 1、......数据全部缺失,不予考虑。 2、对数据测试的特点,如,周期等进行分析。 3、......数据残缺,根据数据挖掘等理论根据......变化趋势进行补充。 4、对数据特点(后面将会用到的特征)进行提取。(二)聚类分析(进行采样) 用......软件聚类分析和各个不同问题的需要,采得。。。组采样,每组5-8个采样值。将采样所对应的特征值进行列表或图示。预测的准备工作根据数据特点,对总体和个体的特点进行比较,以表格或图示方式显示。第二部分:问题1的...模型(4号宋体)模型I(......的模型)该种模型的一般数学表达式,意义,和式中各种参数的意义。注明参考文献。......模型I的建立和求解说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。给出问题1的数学模型I表达式和图形表示式。给出误差分析的理论估计。3.模型I的数值模拟将模型I进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。对误差进行数据分析。模型II(......的模型)该种模型的一般数学表达式,意义,和式中各种参数的意义。注明参考文献。......模型II的建立和求解说明问题1适用此模型来解决,并将模型进行改进以适应问题1。借助准备工作中的采样,通过确定出模型中的参数。给出问题1的数学模型I表达式和图形表示式。给出误差分析的理论估计。3.模型II的数值模拟将模型II进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。对误差进行数据分析 (三)模型III(......的模型) ........................(四)问题1的三种数学模型的比较。对三种模型的优点和缺点结合原始数据和模拟预测数据进行比较。给出各自得优点和缺点。第三部分:问题2的...个模型(4号宋体)........................。第四部分:问题3的...个模型(4号宋体)........................。六、模型评价与推广对本文中的模型给出比较客观的评价,必须实事求是,有根据,以便评卷人参考。推广和优化,需要挖空心思,想出合理的、甚至可以合理改变题目给出的条件的、不一定可行但是具有一定想象空间的准理想的方法、模型。(大胆、合理、心细。反复推敲,这段500字半页左右的文字,可能决定生死存亡。)七、参考文献(4号黑体)(书写格式如下) [1] 作者名1,作者名2.文章名字.杂志名字,年,卷(期):起始页码-结束页码[2] 作者名1,作者名2.书名.出版地:出版社,年,起始页码-结束页码[3] 作者名1,作者名2.文章名字. 年,卷(期):起始页码-结束页码,网页地址。[4] 李传鹏,什么是中国标准书号,,2006-9-18。[5] 徐玖平、胡知能、李军,运筹学(II类),北京:科学出版社,2004。[6] Ishizuka Y, AiyoshiE. Double penalty method for bilevel optimization problems. Annals of Operations Research, 24: 73- 88,1992。注意:5篇以上!八、附件(4号黑体)(正文中不许出现程序,如果要附程序只能以附件形式给出) 数学建模评分参考标准摘要(很重要) 5分数据筛选 35分数学模型 35分数据模拟 15分总体感觉 10分特别注意1.问题的结果要让评卷人好找到;显要位置---独立成段2.摘要中要将方法、结果讲清楚;3.可以有目录也可以不要目录;4.建模的整个过程要清楚,自圆其说,有结果、有创新;5.采样要足够多,每组不少于7个;6.模型要与数据结合,用数据验证过;7.如果数学方法选错,肯定失败;8.规范、整洁;总页数在35~45之间为宜。9.必须有数学模型,同一问题的不同模型要比较;10.数据必须有分析和筛选;11.模型不能太复杂,若用多项式回归分析,次数以3次为好。
Sophie小蕉
python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白质功能预测。4、基于第三方库的人脸识别系统的设计与实现。5、基于hbase搜索引擎的设计与实现。6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。7、客户潜在价值评估系统的设计与实现。8、基于神经网络的文本分类的设计与实现。
伯纳乌的蓝
数据挖掘的算法及技术的应用的研究论文
摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。
关键词: 数据挖掘; 技术; 应用;
引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。
一、数据挖掘概述
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。
二、数据挖掘的基本过程
(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。
三、数据挖掘方法
1、聚集发现。
聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。
2、决策树。
这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。
四、数据挖掘的应用领域
市场营销
市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。
金融投资
典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。
结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。
参考文献
[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.
[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.
数据挖掘在软件工程技术中的应用毕业论文 【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通
数据挖掘的算法及技术的应用的研究论文 摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是
近三年机器学习顶级期刊pmlr。对发展如此迅速的机器学习和数据挖掘领域,要概述其研究进展或发展动向是相当困难的,感兴趣的读者不妨参考近年来机器学习和数据挖掘方面
数据挖掘是从大量数据中提取人们感兴趣知识的高级处理过程, 这些知识是隐含的、 事先未知的, 并且是可信的、 新颖的、 潜在有用的、 能被人们理解的模式。随着信息
可能会问数据来源,数据的真实性,数据量,还有挖掘算法之类的。