• 回答数

    6

  • 浏览数

    188

蘅芷菁苓
首页 > 学术论文 > 矩阵方程的解毕业论文

6个回答 默认排序
  • 默认排序
  • 按时间排序

桑珠欢穆

已采纳

{2 1}0 {1 2}{1 2}X={-1 4} 得:x={1 2}0{2 1}^(-1)000000{-1 4}*{1 2}x={1 2}000000000{2,-1}00{-1 4}*(1/3)*{-1,2}x={0,1}00{-2,3} 那些0是保证上下的括号对齐。

118 评论

伯符仲謀

可以利用初等变换法

将两个矩阵放在一起

前面一个矩阵变成单位矩阵

后面一个即为所求的矩阵X

过程如下图:

162 评论

超超超级棒的

243 评论

我喜欢小吃

方法和过程如下:

286 评论

沁水冰心

可以用初等变换法:

有固定方法,设方程的系数矩阵为A,未知数矩阵为X,常数矩阵为B,即AX=B,要求X,则等式两端同时左乘A^(-1),有X=A^(-1)B。又因为(A,E)~(E,A^(-1)),所以可用初等行变换求A^(-1),从而所有未知数都求出来了。

1、矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。

2、将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。

3、关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

145 评论

瘦小的土拨鼠

可以用初等变换法:

有固定方法,设方程的系数矩阵为A,未知数矩阵为X,常数矩阵为B,即AX=B,要求X,则等式两端同时左乘A^(-1),有X=A^(-1)B。又因为(A,E)~(E,A^(-1)),所以可用初等行变换求A^(-1),从而所有未知数都求出来了。

矩阵方程的行等变换。一般情况下有AX=B,XA=B,AXC=B。那么A,C是可逆的,则依次有X=A的逆矩阵乘以B,X=B矩阵乘以A的逆矩阵。X=A矩阵的逆矩阵B乘以C的逆矩阵。

扩展资料:

对于矩阵方程,当系数矩阵是方阵时,先判断是否可逆。如果可逆,则可以利用左乘或右乘逆矩阵的方法求未知矩阵,如果方阵不可逆或是系数矩阵不是方阵,则需要用矩阵的广义逆来确定矩阵方程有解的条件,进而在有解的情形求出通解。

举个例子:

1 3 2 …… 3 4 -1

2 6 5 * X = 8 8 3

-1 -3 1 ……-4 1 6

上列就是个矩阵方程。

参考资料来源:百度百科-矩阵方程

189 评论

相关问答

  • 浅析矩阵的秩毕业论文

    “秩”是指图像经过矩阵变换之后的空间维度,指的是列空间的维度。

    奇文文1314 6人参与回答 2023-12-09
  • 数学矩阵求逆矩阵的毕业论文

    一般使用初等行变换或者伴随矩阵方法,来求逆矩阵。

    蝎子豆丁 2人参与回答 2023-12-12
  • 毕业论文矩阵的相似度

    一般来说,大学论文相似性最显著的差异是学历。学历越高,对论文相似性的要求越严格。硕士论文相似度一般在10% ~ 15%以下,博士论文相似度一般在5% ~ 10%

    新驰销售一部 5人参与回答 2023-12-06
  • 浅谈矩阵的毕业论文

    据我所知,矩阵可以解高次方程,在线性代数中也有运用。

    没油什么大不了 6人参与回答 2023-12-09
  • 正定矩阵的判别方法毕业论文

    矩阵正定的判定条件如下: 1、对称矩阵A正定的充分必要条件是A的n个特征值全是正数。 2、对称矩阵A正定的充分必要条件是A合同于单位矩阵E。 3、对称矩阵A正定

    Icecream0513 3人参与回答 2023-12-09