首页 > 毕业论文 > 广义积分敛散性毕业论文

广义积分敛散性毕业论文

发布时间:

广义积分敛散性毕业论文

1、这道广义积分敛散性判断过程见上图。

2、此广义积分是收敛的。

3、这广义积分属于无穷限的广义积分,由于求出的积分值等于1,所以,广义积分是收敛的。

具体的广义积分敛散性判断的详细步骤及说明见上。

运用柯西判别法的极限形式令L=lim(x->+∞) x^p/[x^a*(lnx)^b]=lim(x->+∞) [x^(p-a)]/[(lnx)^b](1)令p>1当a>=p>1时,L=0,所以原积分收敛(2)令p<=1当a1时,原积分=[1/(1-b)]*1/(lnx)^(b-1)|(3,+∞)=1/(b-1)(ln3)^(b-1),收敛综上所述,a>1时,原积分收敛01时,原积分收敛

主要的广义积分敛散性证明方法如下:套定义验证比较判别法、等价无穷小Cauchy准则Dirichlet判别法Abel判别法另外本文还有用Cauchy准则来处理广义积分有关的证明题的例题总结.1 广义积分的定义定义[无穷积分]如果 f(x) 在任意有限区间 [a,A] 都是Riemann可积, 且极限 \lim\limits_{A\to+\infty}\int_a^Af(x)dx 存在, 则把无穷积分定义为\int_a^{+\infty}f(x)dx=\lim\limits_{A\to+\infty}\int_a^Af(x)dx.否则称无穷积分是发散的.此外,\int_{-\infty}^{+\infty}f(x)dx=\int_a^{+\infty}f(x)dx+\int_{-\infty}^af(x)dx.这与Cauchy主值积分不同:(.)\int_{-\infty}^{+\infty}f(x)dx=\lim\limits_{A\to+\infty}\int_{-A}^{A}f(x)dx.广义积分与Riemann积分有类似性质, 运算法则(分部积分、变量替换等)可以推广过来.

广义积分判断敛散性的方法是积分后计算出来是定值,不是无穷大,就是收敛;积分后计算出来的不是定值,是无穷大,就是发散 。广义积分判别法只要研究被积函数自身的性态,即可知其敛散性。

反常积分又叫广义积分,是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又称无界函数的反常积分)。

广义积分判别法不仅比传统的判别法更加精细,而且避免了传统判别法需要寻找参照函数的困难。

定积分的积分区间都是有限的,被积函数都是有界的。但在实际应用和理论研究中,还会遇到一些在无限区间上定义的函数或有限区间上的无界函数,对它们也需要考虑类似于定积分的问题。

因此,有必要对定积分的概念加以推广,使之能适用于上述两类函数。这种推广的积分,由于它异于通常的定积分,故称之为广义积分,也称之为反常积分。

反常积分敛散性毕业论文

0~1 时 lim(x→0) x^m/[x^m/(1+x^n)]=1故∫[x^m/(1+x^n)]dx与∫x^mdx同时敛散。m>=0时所给积分是常义积分,作为反常积分仅在-11时∫x^(m-n)dx收敛。

0~1 时 lim(x→0) x^m/[x^m/(1+x^n)]=1故∫[x^m/(1+x^n)]dx与∫x^mdx同时敛散。m>=0时所给积分是常义积分,作为反常积分仅在-11时∫x^(m-n)dx收敛。故。。。。

只有q<1的时候才收敛,=1的时候和log(x-a)通阶,>1的时候,和(x-a)的1-q次方同阶

反常积分的收敛性毕业论文

如图

反常积分的敛散判断本质上是极限的存在性与无穷小或无穷大的比阶问题。首先要记住两类反常积分的收敛尺度:

对第一类无穷限  而言,当x→+∞时,f(x)必为无穷小,并且无穷小的阶次不能低于某一尺度,才能保证收敛;

对第二类无界函数  而言,当x→a+时,f(x)必为无穷大。且无穷小的阶次不能高于某一尺度,才能保证收敛;这个尺度值一般等于1,注意识别反常积分。[2]

答:我前几天回答过类似题目,不过那个更深一些。作不定积分:∫dx/(x(lnx)^k)当k=1时,上式=ln(lnx)+C,当x->+∞发散;当k≠1时,不定积分则=1/(-k+1)*(lnx)^(-k+1) + C当k<1,x->+∞时发散。当k>1时,limx->+∞ 1/(-k+1)*(lnx)^(-k+1) = 0 所以定积分∫(2到+∞) dx/[x(lnx)^k]=0-1/(-k+1)*(ln2)^(-k+1)=[(ln2)^(1-k)]/(k-1)即当k<=1时发散,k>1时收敛。

1、定义法求积分值与判定积分的敛散性定义法计算反常积分及判定反常积分的收敛性的依据:定积分的计算与积分结果求极限即首先通过将无穷限的反常积分转换为有限区间上的定积分和将无界函数的反常积分转换为有界函数的定积分计算;然后对积分结果求极限;最后根据极限的存在性和极限值来计算得到反常积分的值或者判定反常积分的敛散性。2、反常积分收敛性的判定方法判定方法对照正项常值级数收敛性判定的比较审敛法与相类似的结论:p-积分与q-积分(1)无穷区间上的反常积分收敛性判定方法的比较审敛法,基于p-积分的结论(2)无界函数的反常积分收敛性判定方法的比较审敛法,基于q-积分的结论【注1】对于同时包含两类反常积分的积分,借助积分对积分区间的可加性,分别转换为两类反常积分计算积分值或判定积分的收敛性。【注2】对于一个反常积分转换为几个基本的反常积分进行收敛性的判定时,值得注意的是,只要一项积分发散,则整个积分发散。【注3】反常积分同样可以使用“偶倍奇零”化简积分计算,注意能够使用的前提是反常积分收敛。

广义积分的计算毕业论文

如图

答案为兀,过程如图请参考

一般的广义积分都是先按照正常的积分求出原函数,然后在定义不存在的点求极限即可。

详细过程如图,希望能帮到你

∫(0->+∞) (-x) dx

=-∫(0->+∞) x de^(-x)

=-[(-x)]|(0->+∞) + ∫(0->+∞) e^(-x) dx

=0 -[ e^(-x) ]|(0->+∞)

=1

反常积分存在时的几何意义:函数与X轴所围面积存在有限制时,即便函数在一点的值无穷,但面积可求。

例如

的几何意义是:位于曲线

之下,X轴之上,直线x=0和x=a之间的图形面积,而x=a点的值虽使

无穷,但面积可求。

广义逆矩阵性质毕业论文

性质1:A的逆矩阵的逆等于A;2:λA的逆=(1/λ)*A的逆;3:(AB)的逆=B的逆*A的逆;4:A的转置的逆=A的逆的转置5:若A可逆,det(A的逆)=(detA)的逆没你说的(A的你+B的逆+C的逆)=(A+B+C)的逆这个是不对的 !

性质:

1,可逆矩阵一定是方阵。

2,如果矩阵A是可逆的,其逆矩阵是唯一的。

3,A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4,可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)

5,若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6,两个可逆矩阵的乘积依然可逆。

7,矩阵可逆当且仅当它是满秩矩阵。

扩展资料:

设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。

(1)验证两个矩阵互为逆矩阵

按照矩阵的乘法满足:  故A,B互为逆矩阵。

(2)逆矩阵的唯一性

若矩阵A是可逆的,则A的逆矩阵是唯一的。

证明:若B,C都是A的逆矩阵,则有所以B=C,即A的逆矩阵是唯一的。

(3)判定简单的矩阵不可逆

如  。假设有  是A的逆矩阵,

则有

比较其右下方一项:0≠1。 若矩阵A可逆,则 |A|≠0

若A可逆,即有A-1,使得AA-1=E,故|A|·|A-1|=|E|=1则|A|≠0

参考资料:百度百科----逆矩阵

性质:1,可逆矩阵一定是方阵。2,如果矩阵a是可逆的,其逆矩阵是唯一的。3,a的逆矩阵的逆矩阵还是a。记作(a-1)-1=a。4,可逆矩阵a的转置矩阵at也可逆,并且(at)-1=(a-1)t (转置的逆等于逆的转置)。5,若矩阵a可逆,则矩阵a满足消去律。即ab=o(或ba=o),则b=o,ab=ac(或ba=ca),则b=c。6,两个可逆矩阵的乘积依然可逆。7,矩阵可逆当且仅当它是满秩矩阵。

逆矩阵的性质:

1、可逆矩阵是方阵。

2、矩阵A是可逆的,其逆矩阵是唯一的。

3、A的逆矩阵的逆矩阵还是A。

4、可逆矩阵A的转置矩阵AT可逆,并且(AT)-1=(A-1)T 。

5、若矩阵A可逆,则矩阵A满足消去律。

6、两个可逆矩阵乘积依然是可逆的。

设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。

逆矩阵的唯一性:若矩阵A是可逆的,则A的逆矩阵是唯一的。

扩展资料:

如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。

也就是说,这两个矩阵的秩等于它们的级数(或称为阶,也就是说,A与B都是方阵,且rank(A) = rank(B) = n)。

证明:

1、逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。

设B与C都为A的逆矩阵,则有B=C

2、假设B和C均是A的逆矩阵,B=BI=B(AC)=(BA)C=IC=C,因此某矩阵的任意两个逆矩阵相等。

3、由逆矩阵的唯一性,A-1的逆矩阵可写作(A-1)-1和A,因此相等。

4、矩阵A可逆,有AA-1=I 。(A-1) TAT=(AA-1)T=IT=I ,AT(A-1)T=(A-1A)T=IT=I

5、由可逆矩阵的定义可知,AT可逆,其逆矩阵为(A-1)T。而(AT)-1也是AT的逆矩阵,由逆矩阵的唯一性,因此(AT)-1=(A-1)T。

参考资料来源:百度百科——逆矩阵

  • 索引序列
  • 广义积分敛散性毕业论文
  • 反常积分敛散性毕业论文
  • 反常积分的收敛性毕业论文
  • 广义积分的计算毕业论文
  • 广义逆矩阵性质毕业论文
  • 返回顶部