首页 > 毕业论文 > 反常积分的收敛性毕业论文

反常积分的收敛性毕业论文

发布时间:

反常积分的收敛性毕业论文

如图

反常积分的敛散判断本质上是极限的存在性与无穷小或无穷大的比阶问题。首先要记住两类反常积分的收敛尺度:

对第一类无穷限  而言,当x→+∞时,f(x)必为无穷小,并且无穷小的阶次不能低于某一尺度,才能保证收敛;

对第二类无界函数  而言,当x→a+时,f(x)必为无穷大。且无穷小的阶次不能高于某一尺度,才能保证收敛;这个尺度值一般等于1,注意识别反常积分。[2]

答:我前几天回答过类似题目,不过那个更深一些。作不定积分:∫dx/(x(lnx)^k)当k=1时,上式=ln(lnx)+C,当x->+∞发散;当k≠1时,不定积分则=1/(-k+1)*(lnx)^(-k+1) + C当k<1,x->+∞时发散。当k>1时,limx->+∞ 1/(-k+1)*(lnx)^(-k+1) = 0 所以定积分∫(2到+∞) dx/[x(lnx)^k]=0-1/(-k+1)*(ln2)^(-k+1)=[(ln2)^(1-k)]/(k-1)即当k<=1时发散,k>1时收敛。

1、定义法求积分值与判定积分的敛散性定义法计算反常积分及判定反常积分的收敛性的依据:定积分的计算与积分结果求极限即首先通过将无穷限的反常积分转换为有限区间上的定积分和将无界函数的反常积分转换为有界函数的定积分计算;然后对积分结果求极限;最后根据极限的存在性和极限值来计算得到反常积分的值或者判定反常积分的敛散性。2、反常积分收敛性的判定方法判定方法对照正项常值级数收敛性判定的比较审敛法与相类似的结论:p-积分与q-积分(1)无穷区间上的反常积分收敛性判定方法的比较审敛法,基于p-积分的结论(2)无界函数的反常积分收敛性判定方法的比较审敛法,基于q-积分的结论【注1】对于同时包含两类反常积分的积分,借助积分对积分区间的可加性,分别转换为两类反常积分计算积分值或判定积分的收敛性。【注2】对于一个反常积分转换为几个基本的反常积分进行收敛性的判定时,值得注意的是,只要一项积分发散,则整个积分发散。【注3】反常积分同样可以使用“偶倍奇零”化简积分计算,注意能够使用的前提是反常积分收敛。

反常积分敛散性毕业论文

0~1 时 lim(x→0) x^m/[x^m/(1+x^n)]=1故∫[x^m/(1+x^n)]dx与∫x^mdx同时敛散。m>=0时所给积分是常义积分,作为反常积分仅在-11时∫x^(m-n)dx收敛。

0~1 时 lim(x→0) x^m/[x^m/(1+x^n)]=1故∫[x^m/(1+x^n)]dx与∫x^mdx同时敛散。m>=0时所给积分是常义积分,作为反常积分仅在-11时∫x^(m-n)dx收敛。故。。。。

只有q<1的时候才收敛,=1的时候和log(x-a)通阶,>1的时候,和(x-a)的1-q次方同阶

广义积分敛散性毕业论文

1、这道广义积分敛散性判断过程见上图。

2、此广义积分是收敛的。

3、这广义积分属于无穷限的广义积分,由于求出的积分值等于1,所以,广义积分是收敛的。

具体的广义积分敛散性判断的详细步骤及说明见上。

运用柯西判别法的极限形式令L=lim(x->+∞) x^p/[x^a*(lnx)^b]=lim(x->+∞) [x^(p-a)]/[(lnx)^b](1)令p>1当a>=p>1时,L=0,所以原积分收敛(2)令p<=1当a1时,原积分=[1/(1-b)]*1/(lnx)^(b-1)|(3,+∞)=1/(b-1)(ln3)^(b-1),收敛综上所述,a>1时,原积分收敛01时,原积分收敛

主要的广义积分敛散性证明方法如下:套定义验证比较判别法、等价无穷小Cauchy准则Dirichlet判别法Abel判别法另外本文还有用Cauchy准则来处理广义积分有关的证明题的例题总结.1 广义积分的定义定义[无穷积分]如果 f(x) 在任意有限区间 [a,A] 都是Riemann可积, 且极限 \lim\limits_{A\to+\infty}\int_a^Af(x)dx 存在, 则把无穷积分定义为\int_a^{+\infty}f(x)dx=\lim\limits_{A\to+\infty}\int_a^Af(x)dx.否则称无穷积分是发散的.此外,\int_{-\infty}^{+\infty}f(x)dx=\int_a^{+\infty}f(x)dx+\int_{-\infty}^af(x)dx.这与Cauchy主值积分不同:(.)\int_{-\infty}^{+\infty}f(x)dx=\lim\limits_{A\to+\infty}\int_{-A}^{A}f(x)dx.广义积分与Riemann积分有类似性质, 运算法则(分部积分、变量替换等)可以推广过来.

广义积分判断敛散性的方法是积分后计算出来是定值,不是无穷大,就是收敛;积分后计算出来的不是定值,是无穷大,就是发散 。广义积分判别法只要研究被积函数自身的性态,即可知其敛散性。

反常积分又叫广义积分,是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又称无界函数的反常积分)。

广义积分判别法不仅比传统的判别法更加精细,而且避免了传统判别法需要寻找参照函数的困难。

定积分的积分区间都是有限的,被积函数都是有界的。但在实际应用和理论研究中,还会遇到一些在无限区间上定义的函数或有限区间上的无界函数,对它们也需要考虑类似于定积分的问题。

因此,有必要对定积分的概念加以推广,使之能适用于上述两类函数。这种推广的积分,由于它异于通常的定积分,故称之为广义积分,也称之为反常积分。

数项级数收敛毕业论文

数学期望是随机变量最重要的特征数之一,它是消除随机性的主要手段.本文通过对数学期望的概念、性质以及应用性的举例,下面是我为你整理的数学期望应用毕业论文,一起来看看吧。

摘要:数学期望是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述了概率论与数理统计中的教学期望在生活中的应用,文章列举了一些现实生活实例,阐述了数学期望在经济和实际问题中颇有价值的应用。

关键词:随机变量,数学期望,概率,统计

数学期望(mathematical expectation)简称期望,又称均值,是概率论中一项重要的数字特征,在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。

1.决策方案问题

决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。

投资方案

假设某人用10万元进行为期一年的投资,有两种投资方案:一是购买股票;二是存入银行获取利息。买股票的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为8%,可得利息8000元,又设经济形势好、中、差的概率分别为30%、50%、20%。试问应选择哪一种方案可使投资的效益较大?

[摘 要] 离散型随机变量数学期望是概率论和数理统计的重要概念之一,是用概率论和数理统计来反映随机变量取值分布的特征数。通过探讨数学期望在经济和实际问题中的一些简单应用,以期让学生了解数学期望的理论知识与人类实践紧密联系,它们是不可分割、紧密联系的。

[关键词] 数学期望;离散型随机变量

一、离散型随机变量数学期望的内涵

在概率论和统计学中,离散型随机变量的一切可能的取值xi与对应的概率P(=xi)之积的和称为数学期望(设级数绝对收敛),记为E(x)。数学期望又称期望或均值,其含义实际上是随机变量的平均值,是随机变量最基本的数学特征之一。但期望的严格定义是∑xi*pi绝对收敛,注意是绝对,也就是说这和平常理解的平均值是有区别的。一个随机变量可以有平均值或中位数,但其期望不一定存在。

二、离散型随机变量数学期望的作用

期望表示随机变量在随机试验中取值的平均值,它是概率意义下的平均值,不同于相应数值的算术平均数。是简单算术平均的一种推广,类似加权平均。在解决实际问题时,作为一个重要的参数,对市场预测,经济统计,风险与决策,体育比赛等领域有着重要的指导作用,为今后学习高等数学、数学分析及相关学科产生深远的影响,打下良好的基础。作为数学基础理论中统计学上的数字特征,广泛应用于工程技术、经济社会领域。其意义是解决实践中抽象出来的数学模型进行分析的方法,从而达到认识客观世界规律的目的,为进一步的决策分析提供准确的理论依据。

三、离散型随机变量的数学期望的求法

离散型随机变量数学期望的求法常常分四个步骤:

1.确定离散型随机变量可能取值;

2.计算离散型随机变量每一个可能值相应的概率;

3.写出分布列,并检查分布列的正确与否;

4.求出期望。

四、数学期望应用

(一)数学期望在经济方面的应用

例1: 假设小刘用20万元进行投资,有两种投资方案,方案一:是用于购买房子进行投资;方案二:存入银行获取利息。买房子的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为,可得利息11000元,又设经济形势好、中、差的概率分别为40%、40%、20%。试问应选择哪一种方案可使投资的效益较大?

第一种投资方案:

购买房子的获利期望是:E(X)=4××(--2)×(万元)

第二种投资方案:

银行的获利期望是E(X)=(万元),

由于:E(X)>E(X),

从上面两种投资方案可以得出:购买房子的期望收益比存入银行的期望收益大,应采用购买房子的方案。在这里,投资方案有两种,但经济形势是一个不确定因素,做出选择的依据是数学期望的高低。

(二)数学期望在公司需求方面的应用

例2:某小公司预计市场的需求将会增长。公司的员工目前都满负荷地工作。为满足市场需求提高产量,公司考虑两种方案 :第一种方案:让员工超时工作;第二种方案:添置设备。

假设公司预测市场需求量增加的概率为P,当然可能市场需求会下降的概率是1―P,若将已知的相关数据列于下表:

市场需求减(1-p) 市场需求增加(p)

维持现状(X)

20万 24万

员工加班(X)

19万 32万

耀加设备(X)

15万 34万

由条件可知,在市场需求增加的情况下,使员工超时工作或添加设备都是合算的。然而现实是不知道哪种情况会出现,因此要比较几种方案获利的期望大小。用期望值判断:

E(X)=20(1-p)+24p,E(X)=19(1-p)+32p,E(X)=15(1-p)+34p

分两种情况来考察:

(1)当p=,则E(X)=(万),E(X)=(万),E(X)=(万),于是公司可以决定更新设备,扩大生产;

(2)当p=,则E(X)=22(万),E(X)=(万),E(X)=(万),此时公司可决定采取员工超时工作的应急措施扩大生产。

由此可见,从上面两种情况可以得出:如果p=时,公司可以决定更新设备,扩大生产。如果p=时,公司可决定采取员工超时工作的应急措施。因此,只要市场需求增长可能性在50%以上,公司就应采取一定的措施,以期利润的增长。

(三)数学期望在体育比赛的应用

乒乓球是我们得国球,全国人民特别爱好,我们在这项运动中具有绝对的优势。现就乒乓球比赛的赛制安排提出两种方案:

第一种方案是双方各出3人,三局两胜制,第二种方案是双方各出5人,五局三胜制。对于这两种方案, 哪一种方案对中国队更有利?不妨我们来看一个实例:

假设中国队每一位队员对美国队的每一位队员的胜率都为55%。根据前面的分析,下面我们只需比较两队的数学期望值的大小即可。

在五局三胜制中,中国队若要取得胜利,获胜的场数有3、4、5三种结果。我们应用二项式定律、概率方面的知识,计算出三种结果所对应的概率,恰好获得三场对应的概率:;恰好获得四场对应的概率:;五场全胜得概率:.

设随机变量X为该赛制下中国队在比赛中获胜的场数,则可建立X的分布律: X 3 4 5

P

计算随机变量X的数学期望:

E(X)=3×××

在三局两胜制中,中国队取得胜利,获胜的场数有2、3两种结果。对应的概率为=;三场全胜的概率为=。

设随机变量Y为该赛制下中国队在比赛中获胜的场数,则可建立Y的分布律:

X 2 3

Y

计算随机变量Y的数学期望:

E(Y)=2××

比较两个期望值的大小,即有E(X)>E(Y),因此我们可以得出结论,五局三胜制中国队更有利。

因此,我们在这样的比赛中,五局三胜制对中国队更有利。在体育比赛中,要看具体的细节,具体情形,把握好比赛赛制,用我们所学习的知识来实现期望值的最大化,做到知己知彼,百战百胜。

(四)数学期望对企业利润的评估

在市场经济活动中,厂家的生产或是商家的销售.总是追求最大的利润。在生产过程中供大于求或供不应求都不利于获得最大利润来扩大再生产。但在市场经济中,总是瞬息万变,往往供应量和需求量无法确定。而厂家或商家在一般情况下根据过去的数据,再结合现在的具体情况,具体对象,常常用数学期望的方法结合微积分的有关知识,制定最佳的生产活动或销售策略。

假定某公司计划开发一种新产品市场,并试图确定其产量。估计出售一件产品,公司可获利A元,而积压一件产品,可导致损失B元。另外,该公司预测产品的销售量x为一个随机变量,其分布为P(x),那么,产品的产量该如何制定,才能获得最大利润。

假设该公司每年生产该产品x件,尽管x是确定的.但由于需求量(销售量)是一个随机变量,所以收益Y是一个随机变量,它是x的函数:

当xy时,y=Ax;

当xy时,y=Ay--B(x-y)。

于是期望收益为问题转化为:

当x为何值时,期望收益可以达到最大值。运用微积分的知识,不难求得。

这个问题的解决,就是求目标函数期望的最大最小值。

(五)数学期望在保险中问题

一个家庭在一年中五万元或五万元以上的贵重物品被盗的概率是,保险公司开办一年期五万元或五万元以上家庭财产保险,参加者需缴保险费200元,若在一年之内, 五万元或五万元以上财产被盗,保险公司赔偿a元(a>200),试问a如何确定,才能使保险公司期望获利?

设X表示保险公司对任一参保家庭的收益,则X的取值为 200或 200�a,其分布列为:

X 200 200-a

p

E(x)=200×(200-a)×>0,解得a<40000,又a>100,所以a∈(200,40000)时,保险公司才能期望获得利润。

从上面的日常生活中,我们不难发现:利用所学的离散型随机变量数学期望方面的知识解决了生活中的一些具有的,实实在在的问题有大大的帮助。

因此我们在实际生活中,利用所学的离散型随机变量数学期望方面的知识,面对当今信息时代的要求,我们应当思维活跃,敢于创新,既要学习数学理认方面知识,更应该重视对所学知识的实践应用,做到理认联系实际,学以致用。当然只是实际生活中遇到的数学期望应用中的一部分而已,还有更多的应用等待我们去思考,去发现,去探索,为我们伟大的时代创造出更多的有价值的东西和财富。

嗯,要看是不是正项级数了,如果是正项的,那么成立。如果不是正想的级数,那么该结论未必成立。比如 级数-1/n收敛,偶数项或者奇数项构成的级数都发散。

若一个数列的级数收敛那么这个数列的子数列的级数是收敛。

数项级数及其收敛与发散的概念、数项级数敛散性的常用判别法。等比级数的敛散性判定及收敛时的求和,要求掌握有关的结论和公式。

级数收敛注意:

级数的敛散性.要求掌握有关的结论,对于正项级数,在利用比较判别法时,常以级数作为参照,当以上判别方法都不适用时,考虑用敛散性的定义进行判别。利用级数收敛的必要条件只能说明,一般项极限不为零的级数发散,但一般项极限为零的级数未必收敛。

积分因子的毕业论文

、一阶线性微分方程、齐次方程、贝努里方程和全微分方程共5类。积分因子是微分方程中的一个重要概念, 它是指存在一个函数u (7) x, y (8) , 在一个一阶微分方程的两端同乘以u (7) x, y (8) 后, 能使该微分方程成为全微分方程。所以, 快速而准确地求出一个微分方程的积分因子对于求解一阶微分方程显得非常重要[2].

随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系

解:∵dy/dx+py=q==>dy+(py-q)dx=0∴μdy+μ(py-q)dx=0∵μ是原微分方程的积分因子的充要条件是:μ关于x的偏导数=(py-q)关于y的偏导数经检验,只有答案(A)中的μ才满足上述条件∴应该选择答案(A)

1.高三自我陈述报告范文

我当时之所以选择研究积分因子的存在条件是因为一阶微分方程的求解是整个微分方程求解的基础,一般的有两种处理方式:一是以变量可分离的方程为基础,通过适当的变量代换把一阶微分方程化为可积型方程;另外就是以全微分方程为基础,采取积分因子法把一个一阶微分方程化为全微分方程求解。但是寻找积分因子不是容易的事情,一般的教科书只介绍了依据经验或者通过观察来寻找积分因子。在论文中我归纳并概括性的给出了几种积分因子的求法,有助于深刻的理解积分因子的相关内容,进一步学好常微分方程,使得求解一阶微分方程的过程更简便。

在大量阅读的相关方面各种资料,并对一些特定的积分因子有了大致了解,与老师商讨后,确定了论文大致思路和研究方向。在写论文的过程中,我收集了主要来自网上的论文期刊、图书馆的书目、学习教材的理论资料。在张飞羽老师的指导和帮助下从中选取了主要的参考资料,经过阅读主要参考资料,拟定提纲,写开题报告初稿,毕业论文初稿,修改等一系列程序,于xxxx年xx月底正式定稿。

具体来说,我的论文大致可以分为两大部分:首先介绍了恰当微分方程的概念及方程为恰当微分方程的充要条件,然后在了解了积分因子的概念的基础上,归纳并概括的讨论了一些特定的积分因子的存在条件。

经过本次论文写作,我学到了许多有用的东西,也积累了不少经验。但是,由于我的能力不足,在许多内容表述上存在着不当之处,许多问题还有待于进一步思考和探索,借此答辩机会,希望各位老师能够提出宝贵的意见,多指出错误和不足之处,我将虚心接受,从而进一步深入学习研究,使该论文得到完善和提高。谢谢!

2.高三自我陈述报告范文

学习是学生的基本,所以,我至始至终都把学习摆在第一位。三年里学校开的课很多,正因为这样,只有珍惜每一分每一秒的学习时间,坚决不迟到不早退不旷课,才对得住自己的高中学习生涯!

同时,我认为高中是一个不断完善自己,不断充实自己的时期。我本着立足专业,综合发展,做学问,学做人的准则从及全面发展的目标,积极主动参加了社会劳动实践课程,使我在文化知识,思想素质,社会实践和人际处理方面都得到了长足的进步。

虽然高中三年来,我在各方面都有显著进步,但我也清楚地认识到自己的不足之处:钻研精神还不够。在今后的学习中,我相信我一定能克服这个缺点,以自己的所学所长更好地报效祖国。

总的来说,高三这半年较高一高二在心态上有了明显的改变,比以前更加积极了,更感觉有动力了,似乎渐渐地找到了全新的方法,课堂上更加专注了,效率也提高了不少,感觉心态有所调整,反而比以往从心理上有少许轻松。能积极地面对每一天,以更加从容和成熟的心态去上好每天的课,也能更为主动的去问题。

也希望在成绩上能在原有基础上更进一步,弥补弱势学科和他人的差距,要在薄弱科目上更多下功夫。

依然用笑容面对每一件事,每一个人,还有几个月的时间,不能懈怠,要用更饱满的热情去学习,去奋发,尽的努力拥有一个美好的夏天。就没每一天来讲,还是要踏踏实实地干好自己的活,心如止水,始终不忘当前的'主要任务,不能放过任何一问题,一步一个脚印地走到六月!

3.高三自我陈述报告范文

在寻找解决困难方法的同时我从中会到很多。同时我把困难和挫折看成是人生中不可避免的磨练,如果没有困难和挫折的激励你的生活就不是完美的!

仅有不段的去经历才会使我在成长才会从中吸取到教训,从而更好的去应对不论是学习、生活以及工作中的没一个问题。我相信只要努力就会成功,只要我们有不段创新的精神我相信我必须能够把工作做好,即使不是也要努力去做好!

作为跨世纪的一代,我们即将告别中学时代的酸甜苦辣,迈入高校去寻找另一片更加广阔的天空。在这最终的中学生活里,我将努力完善自我,提高学习成绩,为几年来的中学生活划上完美的句号,也以此为人生篇章中光辉的一页。

在家里,我孝敬父母,帮忙他们做力所能及的家务事,关心体谅父母,使得家庭关系更加融洽,使我能更好地投入学习,为将来的事业打下坚实基础。

在社会上,我讲礼貌,懂礼貌,在车上主动为老人和小朋友让座,得到了不少街坊邻居的好评,我以后会继续努力。

珍爱友谊,拥有阳光一般灿烂的心境。在今后的学习中,相信会以执着的信念和勤奋的汗水争取属于我的成功!

是一个乐观的女孩,脸上总挂着自信的笑容;你是一个学习认真刻苦的学生,整齐的作业总是让教师赏心悦目。但人生之路还会遇到坎坷,愿你永远笑对一切,用自我的汗水和智慧赢得属于你的胜利。

4.高三自我陈述报告范文

通过在高三学的知识使我又成长了一步,转眼时间过去了,我还恋恋不舍的怀念。我要感谢老师传授给我知识,感谢同学给予我的关怀。让我在这个美丽的校园里茁壮成长,高三的第一个学期就这样结束了。迎来了盼望已久的寒假。

时光飞逝,斗转星移。转眼成为班级一员已半年多了。回首这半年的点点滴滴,朝朝暮暮,心中顿生了许多感触。这半年中经历的每一天,都已在我心中留下了永久的印记,因为这些印记见证我这样一个新生的成长。在过去半年的内,通过不断地学习,我收获了很多。时间就是这么无情头也不回的向前走着,而我们却在为了不被它丢下死命的追赶着。是的,谁都不想被时间丢下。而我们也随着时间的流逝一点一点的成长。而美好的纯真随着风雨的磨灭化成了成熟。或许这正是成长的代价。回想自己还是考生的那段日子,显得是那么的遥远。我在憧憬中懂得了来之不易的珍惜;在思索中了解了酝酿已久的真理;在收获后才知道努力的甜美。突然觉得自己似乎明白了许多事情,但是仔细琢磨后又不尽然……原来过去所见所识都是那么的偏见而又肤浅,以前的天真似乎在一瞬间幻化成无知和可笑,我想谁又不是这样的呢?或许在以后也回嘲笑现在的渺小……我们不得不笑着回首我们所走过的路。:

在学习上:我深知学习的重要性。面对二十一世纪这个知识的时代,面对知识就是力量,科学技术是第一生产力的科学论断,我认为离开了知识将是一个一无是处的废人。以资本为最重要生产力的"资本家"的时代将要过去,以知识为特征的"知本家"的时代即将到来。而高中时代是学习现代科学知识的黄金时代,我应该抓住这个有利的时机,用知识来武装自己的头脑,知识是无价的。

在纪律方面,基本可以做到:尊重教师,同学之间可以真诚相待;能遵守学校各项纪律,遵守公共秩序,遵守社会公德;不迟到、不早退、不旷课;上学穿校服;举止文明;有良好的卫生习惯,不乱扔废弃物。

以上是我对高三上学期期末一些方面的个人总结,我将结合这个小结回顾过去,确定未来的发展目标,我对未来充满信心。自然,这需要老师们的精心培养和同学们的真诚帮助。

5.高三自我陈述报告范文

宝剑锋从磨砺出,梅花香自苦寒来 ,本人坚信通过不断地学习和努力,使自己成为一个有理想、有道德、有文化、有纪律的学生,以优异的成绩迎接挑战,为社会主义建设贡献我毕生的力量。

我遵纪守法,尊敬师长,热心助人,与同学相处融洽。我有较强的集体荣誉感,努力为班为校做好事。作为一名团员,我思想进步,遵守社会公德,积极投身实践,关心国家大事。在团组织的领导下,力求更好地锻炼自己,提高自己的,提高自己的思想觉悟。

性格活泼开朗的我积极参加各种有益活动。高一年担任语文科代表,协助老师做好各项工作。参加市演讲比赛获三等奖。主持校知识竞赛,任小广播员。高二以来任班级文娱委员,组织同学参加各种活动,如:课间歌咏,班级联欢会,集体舞赛等。在校文艺汇演中任领唱,参加朗诵、小提琴表演。在校辩论赛在表现较出色,获 辩手 称号。我爱好运动,积极参加体育锻炼,力求德、智、体全面发展,校运会上,在800米、200米及4x100米接力赛中均获较好名次。

三年的高中生活,使我增长了知识,也培养了我各方面的能力,为日后我成为社会主义现代化建设的接班人打下了坚实的基础。但是,通过三年的学习,我也发现了自己的不足,也就是吃苦精神不够,具体就体现在学习上 钻劲 不够、 挤劲 不够。当然,在我发现自己的不足后,我会尽力完善自我,培养吃苦精神,从而保证日后的学习成绩能有较大幅度的提高。作为跨世纪的一代,我们即将告别中学时代的酸甜苦辣,迈入高校去寻找另一片更加广阔的天空。在这最后的中学生活里,我将努力完善自我,提高学习成绩,为几年来的中学生活划上完美的句号,也以此为人生篇章中光辉的一页。

  • 索引序列
  • 反常积分的收敛性毕业论文
  • 反常积分敛散性毕业论文
  • 广义积分敛散性毕业论文
  • 数项级数收敛毕业论文
  • 积分因子的毕业论文
  • 返回顶部