娜是阵疯
提及庞加莱关于数学创造,就不得不说起组合拓扑学。他曾在6篇论文里创造了组合拓扑学,并且,通过引进贝蒂数、挠系数和基本群等一些概念,创造流形的三角剖分、单纯复合形、重心重分、对偶复合形、复合形的关联系数矩阵等工具,并且凭借这些概念成立了欧拉—庞加莱公式,并对流形的同调对偶定理进行了证明。除此之外,庞加莱对数学方面的创造还表现在数学物理和偏微分方程方面所取得的成就。庞加莱使用括去法(sweepingout)证明了狄利克雷问题解的存在。让人感到惊喜的是,后来竟然推动位势论发展到了一个新的阶段。在1881~1886年,庞加莱发表四篇论文,内容是关于微分方程所确定的积分曲线,从而创立了微分方程的定性理论。他指出可以依据解对极限环的关系,来判定解的稳定性。 1883年,庞加莱提出了一个定理,即一般的单值化定理,并且在同一年间,庞加莱进一步的去研究一般解析函数论,他的这一研究贡献巨大,它和皮卡定理组成了整函数及亚纯函数理论发展的
yidiandian100
亨利·庞加莱(Jules Henri Poincaré)是法国数学家,1854年4月29日生于南锡,1912年7月17日卒于巴黎。庞加莱的研究涉及数论、代数学、几何学、拓扑学等许多领域。他被公认是19世纪后四分之一和二十世纪初的领袖数学家,是对于数学和它的应用具有全面知识的最后一个人。研究方向 庞加莱的研究涉及数论、代数学、几何学、拓扑学等许多领域,最重要的工作是在分析学方面。他早期的主要工作是创立自守函数理论(1878)。他引进了富克斯群和克莱因群,构造了更一般的基本域。他利用后来以他的名字命名的级数构造了自守函数,并发现这种函数作为代数函数的单值化函数的效用。 1883年,庞加莱提出了一般的单值化定理(1907年,他和克贝相互独立地给出完全的证明)。同年,他进而研究一般解析函数论,研究了整函数的亏格及其与泰勒展开的系数或函数绝对值的增长率之间的关系,它同皮卡定理构成后来的整函数及亚纯函数理论发展的基础。他又是多复变函数论的先驱者之一。 庞加莱为了研究行星轨道和卫星轨道的稳定性问题,在1881~1886年发表的四篇关于微分方程所确定的积分曲线的论文中,创立了微分方程的定性理论。他研究了微分方程的解在四种类型的奇点(焦点、鞍点、结点、中心)附近的性态。他提出根据解对极限环(他求出的一种特殊的封闭曲线)的关系,可以判定解的稳定性。 1885年,瑞典国王奥斯卡二世设立“n体问题”奖,引起庞加莱研究天体力学问题的兴趣。他以关于当三体中的两个的质量比另一个小得多时的三体问题的周期解的论文获奖,还证明了这种限制性三体问题的周期解的数目同连续统的势一样大。这以后,他又进行了大量天体力学研究,引进了渐进展开的方法,得出严格的天体力学计算技术。 庞加莱还开创了动力系统理论,1895年证明了“庞加莱回归定理”。他在天体力学方面的另一重要结果是,在引力作用下,转动流体的形状除了已知的旋转椭球体、不等轴椭球体和环状体外,还有三种庞加莱梨形体存在。 庞加莱对数学物理和偏微分方程也有贡献。他用括去法证明了狄利克雷问题解的存在性,这一方法后来促使位势论有新发展。他还研究拉普拉斯算子的特征值问题,给出了特征值和特征函数存在性的严格证明。他在积分方程中引进复参数方法,促进了弗雷德霍姆理论的发展。 庞加莱对现代数学最重要的影响是创立组合拓扑学。1892年他发表了第一篇论文,1895~1904年,他在六篇论文中建立了组合拓扑学。他还引进贝蒂数、挠系数和基本群等重要概念,创造流形的三角剖分、单纯复合形、重心重分、对偶复合形、复合形的关联系数矩阵等工具,借助它们推广欧拉多面体定理成为欧拉—庞加莱公式,并证明流形的同调对偶定理。 庞加莱的思想预示了德·拉姆定理和霍奇理论。他还提出庞加莱猜想,在“庞加莱的最后定理”中,他把限制性三体问题的周期解的存在问题,归结为满足某种条件的平面连续变换不动点的存在问题。 庞加莱在数论和代数学方面的工作不多,但很有影响。他的《有理数域上的代数几何学》一书开创了丢番图方程的有理解的研究。他定义了曲线的秩数,成为丢番图几何的重要研究对象。他在代数学中引进群代数并证明其分解定理。第一次引进代数中的左理想和右理想的概念。证明了李代数第三基本定理及坎贝尔—豪斯多夫公式。还引进李代数的包络代数,并对其基加以描述,证明了庞加莱—伯克霍夫—维特定理。 庞加莱对经典物理学有深入而广泛的研究,对狭义相对论的创立有贡献。他从1899年开始研究电子理论,首先认识到洛伦茨变换构成群。 庞加莱的哲学著作《科学与假设》、《科学的价值》、《科学与方法》也有着重大的影响。他是约定主义的代表人物,认为科学公理是方便的定义或约定,可以在一切可能的约定中进行选择,但需以实验事实为依据,避开一切矛盾。在数学上,他不同意罗素、希尔伯特的观点,反对无穷集合的概念,赞成潜在的无穷,认为数学最基本的直观概念是自然数,反对把自然数归结为集合论。这使他成为直觉主义的先驱者之一。 1905年,匈牙利科学院颁发一项奖金为l0000金克朗的鲍尔约奖。这个奖是要奖给在过去25年为数学发展作出过最大贡献的数学家。由于庞加莱从1879年就开始从事数学研究,并在数学的几乎整个领域都作出了杰出贡献,因而此项奖又非他莫属。评价 阿达马这位曾在函数论、数论、微分方程、泛函分析、微分几何、集合论、数学基础等领域作出过杰出贡献的法国数学家认为,庞加莱“整个地改变了数学科学的状况,在一切方向上打开了新的道路。” 庞加莱逝世80年来的历史告诉我们,罗素、西尔维斯特、阿达马等的论断是多么正确!庞加莱一生发表的科学论文约500篇、科学著作约30部,几乎涉及到数学的所有领域以及理论物理、天体物理等的许多重要领域。
墨墨姐姐
法国最伟大的数学家之一,理论科学家和科学哲学家。庞加莱被公认是19世纪后和20世纪初的领袖数学家,是继高斯之后对于数学及其应用具有全面知识的最后一个人。他对数学,数学物理,和天体力学做出了很多创造性的基础性的贡献。他提出的庞加莱猜想是数学中最著名的问题之一。在他对三体问题的研究中,庞加莱成了第一个发现混沌确定系统的人并为现代的混沌理论打下了基础。庞加莱比爱因斯坦的工作更早一步,并起草了一个狭义相对论的简略版。庞加莱群以他命名。
心菲殿下
庞加莱进行研究的领域是非常广泛的,仅数学学科范围的研究领域,庞加莱就不无涉猎,除了研究基础的一些数学科学领域之外, 庞加莱还注重拓补学的研究,而庞加莱的成就也不仅仅是一个他自创的自首函数理论,他还在这一理论的基础上构建了更一般的状况,将这一理论实现平常化。除此之外,庞加莱的成就还体现在他提出的一般的单值化原理上。庞加莱在物理学上的研究主要集中于天体力学的范畴。他为了研究有关天体力学领域中行星轨道等问题还首创性地将微积分的原理运用到物理学研究中,这也是他为什么能够在数学物理学领域中占有一席之地的原因。可以说,庞加莱在天体力学研究中的成就几乎可以媲美牛顿的力学研究,贡献甚巨。但是庞加莱的成就还不止这些,除了上面提到的比较突出的成就之外,著名的动力系统理论也是庞加莱开创的,当然,这也是他天体力学研究领域中的一部分成果。数学上他创立了组合拓补学,还在偏微分方程等一些方面做出了不小的贡献。
发表论文到期刊有以下几点:第一部分:写作论文之前的必要基础知识以及准备工作。第二部分:快速写作论文的方法。第三部分:论文发表的两种渠道(自投和代投)。 论文的含
论文发表流程:第一步:论文投稿,作者将稿件附上个人的信息后发送给我们。【作者简介、详细邮寄地址(可以收到快递的地址,一般是顺丰)邮编、电话、电子信箱、单位等信息
张迪侯马人,小屁孩。
我考察资产阶级经济制度是按照以下的顺序:资本、土地所有制、雇佣劳动;国家、对外贸易、世界市场。在前三项下,我研究现代资产阶级社会分成的三大阶级的经济生活条件;其
1. 关于奋斗生活的散文诗句 关于奋斗生活的散文诗句 1.关于奋斗的诗歌、散文 将(qiāng)进酒 〖唐〗李白 {乐府诗集}