当前位置:学术参考网 > 哥尼斯堡七桥问题论文
此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(LinearProgramming简记LP)则是数学规划的一个重要分支。自从1947年G.B.Dantzig提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。
七桥问题既然是无解的,那么什么情况下才能使问题有解呢?要从一个点出发,最终又能回到同一点的必要条件,是起点的度必须大于0且为偶数。而其它的点因为不是起点也不是终点,所以不能停留,一旦进入则必须走出去,所以它们的度也必须大于0且为偶数。
俗话说:男人三十是一道分水岭。而欧拉紧紧地把握住机会,提前一年就跳了过去。1736年,29岁的欧拉便向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,里面的开头写道:小老弟们,一次走遍哥尼斯堡的7座桥的走法是不存在的。
"哥尼斯堡七桥问题"的解决,与后来数学的图论与几何拓扑有关。1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支——图论与几何拓扑,也由此展开了数学史上的新历程。
用数学建模方法解决哥尼斯堡七桥问题.pdf,第30卷第2期承德民族师专学报Vol.30No.22010年5月JournalofChengdeTeachers’CollegeforNationalitiesMay2010用数学建模方法解决哥尼斯堡七桥问题高中印(承德民族师专数学与计算机系,河北...
谈到图论不得不提的就是著名的哥尼斯堡七桥问题。在贯穿古普鲁士哥尼斯堡城的普瑞格尔河上有七座桥连接及河中的两个小岛,当地居民都很喜欢去岛上游玩,但有一个问题困扰着当地居民了很长的时间。在1736年,该市的一位市民向大数学家欧拉
哥尼斯堡七桥问题最后是被欧拉解决的29岁的欧拉提交了《哥尼斯堡七桥》的论文,解决了这一问题,同时开创了数学新一分支---图论。并且发表了论文《关于位置几何问题的解法》,对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范。
豆丁网是面向全球的中文社会化阅读分享平台,拥有商业,教育,研究报告,行业资料,学术论文,认证考试,星座,心理学等数亿实用文档和书刊杂志。
摘要:在数学教学和学习过程中把抽象、概括和具体化结合起来是非常重要的。哥尼斯堡七桥问题就是很好的一个例子。18世纪,东普鲁士哥尼斯堡有条普莱格尔河,这条...
图论(七)哥尼斯堡七桥问题1736年,年仅29岁的数学家欧拉来到普鲁士的古城哥尼斯堡(哲学家康德的故乡,今俄罗斯加里宁格勒)。普瑞格尔河正好从市中心流过,河中心有两座小岛,岛和之...
哥尼斯堡七桥问题,数学文化课程组,现今俄罗斯的加里宁格勒,旧称哥尼斯堡,是一座历史名城。在十八十九世纪,那里是东普鲁士的首府,曾经诞生和培育过许多伟大的人物。著名的哲学家,古典...
哥尼斯堡七桥问题详解.ppt,*哥尼斯堡七桥问题哥尼斯堡七桥问题故事发生在18世纪欧洲东普鲁士(现为俄罗斯的加里宁格勒)有个名叫哥尼斯堡的城市近郊。这里的普雷盖尔河穿城而过,河...
关于哥尼斯堡七桥问题,著名数学家欧拉对该问题做了一个抽象:“顶点”为陆地,“边”为连接两块陆地的桥梁。这个抽象被称为“图”,并定义了顶点的“度”为连接一个顶点的边的数...
摘要:18世纪时,风景秀丽的欧洲小城哥尼斯堡中有一条河,河中间有两个美丽的小岛,河与小岛之间共建有七座桥][如图1].古往今来,这里迷人的景致吸引了无数的游人驻足于此.著...
故事发生在18世纪的哥尼斯堡城.流经那里的一条河中有两个小岛,还有七座桥把这两个小岛与河岸联系起来,那里风景优美,游人众多.在这美丽的地方,人们议论着一个...