首页 > 学术期刊知识库 > 非线性方程求根的迭代法研究论文

非线性方程求根的迭代法研究论文

发布时间:

非线性方程求根的迭代法研究论文

原方程化为e^x=2-x^2,利用函数图象知只能有一个正根。两边同时取自然对数,x=ln(2-x^2)故迭代格式为X(n+1)=ln[2-(Xn)^2](因为该数列若收敛,则上方程有唯一根,且根为该数列的极限),迭代初始值在1到√2之间选 (迭代法) 定理:迭代函数f(x)在区间[a,b]上满足f(x)∈[a,b],且在[a,b]上有连续导数f'(x),满足|f'(x)|

一元非线性方程的牛顿迭代公式和原理 以一元非线性方程 f(x)=0 为例,对函数 f(x)进行Taylor级数展开(只展开至线性项)得 f(x) = f(x0)+f'(x0)(x-x0) 所以方程可写成 f(x0)+f'(x0)(x-x0) = 0 其中x0是给定的已知值,则不难推导出方程的解(当然,只是近似解,毕竟Taylor展开过程中只取了线性项) x = x0 - f(x0) / f'(x0) 其中x不是真实解,但是相比之前的x0更靠近真实解了,因此可以多重复几次上述过程,从而使得到的解非常接近准确值。所以,对于一元非线性方程,牛顿拉夫逊迭代公式为: x(k+1) = x(k) - f(x(k))/ f'(x(k)) 根据Taylor级数的几何意义我们可以从几何上形象的看牛顿迭代法的求解f(x)=0的过程。第一次迭代x1 = x0 - f(x0)/ f'(x0),其中f(x0)/ f'(x0)的几何意义很明显,就是x0到x1的线段长度(这可以从直角三角形的知识得到)。第二次迭代x2= x1 - f(x1)/ f'(x1),其中f(x1)/ f'(x1)的几何意义很明显,就是x1到x2的线段长度。同理可以进行第三次迭代第四次迭代,可以明显的看出x的取值在不断逼近真实解x*。

function x=Newton(fname,dfname,x0,e,N)%用途:Newton迭代法解非线性方程f(x)=0%fname和dfname分别表示f(x)及其导函数的M函数句柄或内嵌函数表达式%x0为迭代初值,e为精度(默认值1e-7)%x为返回数值解,并显示计算过程,设置迭代次数上限N以防发散(默认500次)%实例:解方程ln(x+sin(x))=0%在matlab窗口中输入:Newton(@(x)log(x+sin(x)),@(x)(1+cos(x))/(x+sin(x)),)if nargin<5,N=500;endif nargin<4,e=1e-7;endx=x0;x0=x+2*e;k=0;fprintf('x[%d]=%\n',k,x)while abs(x0-x)>e&&k

线性方程组解法研究论文

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大贝祖(Bezout Etienne )法国数学家。少年时酷爱数学,主要从事方程论研究。他是最先认识到行列式价值的数学家之一。最早证明了齐次线性方程组有非零解的条件是系数行列式等于零。他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法。他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理。1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究。 十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。 十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。 十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角。 十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。 十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。 1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。 1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例。 1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。 1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。 1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。 1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。 1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。 十四世纪中叶前,中国开始应用珠算盘。 1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。 1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学。 1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识。 1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式。 1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题。 1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论。 1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表。 1614年,英国的耐普尔制定了对数。 1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积。 1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分。 1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”。 1638年,法国的费尔玛开始用微分法求极大、极小问题。 1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就。 1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作。 1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”。 1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱。 1654年,法国的帕斯卡、费尔玛研究了概率论的基础。 1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学。 1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》。 1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究。 1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分。 1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法。 1670年,法国的费尔玛提出“费尔玛大定理”。 1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线。 1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》。 1686年,德国的莱布尼茨发表了关于积分法的著作。 1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究。 1696年,法国的洛比达发明求不定式极限的“洛比达法则”。 1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线。 1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》。 1711年,英国的牛顿发表《使用级数、流数等等的分析》。 1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》。 1715年,英国的布·泰勒发表《增量方法及其他》。 1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试。 1733年,英国的德·勒哈佛尔发现正态概率曲线。 1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机。 1736年,英国的牛顿发表《流数法和无穷级数》。 1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。 1742年,英国的麦克劳林引进了函数的幂级数展开法。 1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。 1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。 1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。 1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。 1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。 1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法。 1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始。 1772年,法国的拉格朗日给出三体问题最初的特解。 1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学。 1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》。 1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表。 1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学。 1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多。 1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根。 微分方程:大致与微积分同时产生 。事实上,求y′=f(x)的原函数问题便是最简单的微分方程。I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布�6�1贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

非齐次线性方程组毕业论文

非齐次线性方程组,其常数项(即不含有未知数的项)不全为零的线性方程组,如:x+y+z=12x+y+z=3x+2y+2z=4齐次线性方程组,常数项全部为零的线性方程组 ,如:x+y+z=02x+y+z=0x+2y+2z=0

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

非齐次线性方程组Ax=b的求解方法:1、对增广矩阵作初等行变换,化为阶梯形矩阵;2、求出导出组Ax=0的一个基础解系;3、求非齐次线性方程组Ax=b的一个特解(为简捷,可令自由变量全为0)4、按解的结构 ξ(特解)+k1a1+k2a2+…+krar(基础解系) 写出通解.注意:当方程组中含有参数时,分析讨论要严谨不要丢情况,此时的特解往往比较繁.【分析】按照非齐次线性方程组的求解方法一步一步来解答对增广矩阵作初等行变换,化为阶梯形1 -1 1 -1 10 0 -2 2 -10 0 0 0 0r(A)=2,基础解系的解向量有4-2=2个令x2=1,x4=0,得x1=1,x3=0 令x2=0,x4=1,得x1=0,x3=1 得到基础解系a1=(1,1,0,0)T a2=(0,0,1,1)T再求方程组的一个特解令x2=x4=0,得x1=1/2,x3=1/2 ξ=(1/2,0,1/2,0)T所以通解为 ξ+k1a1+k2a2,k1,k2为任意常数newmanhero 2015年1月18日11:33:17希望对你有所帮助,

非线性薛定谔方程毕业论文

猜是猜不出这个方程的,如果说是建立,那根据什么建立呢?他应该是从一个普通的波动方程(机械波和电磁波),和德布罗意关系这两个条件凑出来的。普通的波动方程里面有用到波长这个物理量,但德布罗意指出,微观粒子和一个波联系有关系,这个波引导粒子前进(这是他的原始想法,并不是正统量子力学的解释)并且波的波长等于普朗克常量除以粒子的动量。于是,把普通波方程里面的波长参数代换成普朗克常数和粒子动量,经过数学整理,就可以得到薛定谔方程。薛定谔方程的获得,可以有很多方法。假如是生造出来的,肯定是不现实的,没有哪个天才能一下子创造一个方程说微观粒子符合这个条件,相反,薛定谔方程的获得是从以前的数学公式加上现在的新假说、新结果凑合、整理出来的。

1900年,马克斯·普朗克在研究黑体辐射中作出将电磁辐射能量量子化的假设,因此发现将能量与频率关联在一起的普朗克关系式。1905年,阿尔伯特·爱因斯坦从对于光电效应的研究又给予这关系式崭新的诠释:频率为ν的光子拥有的能量为hν;其中,因子h是普朗克常数。这一点子成为后来波粒二象性概念的早期路标之一。由于在狭义相对论里,能量与动量的关联方式类似频率与波数的关联方式,因此可以揣测,光子的动量与波长成反比,与波数成正比,以方程来表示这关系式, 路易·德布罗意认为,不单光子遵守这关系式,所有粒子都遵守这关系式。他于1924年进一步提出的德布罗意假说表明,每一种微观粒子都具有波动性与粒子性,这性质称为波粒二象性。电子也不例外的具有这种性质。电子是一种物质波,称为“电子波”。电子的能量与动量分别决定了伴随它的物质波所具有的频率与波数。在原子里,束缚电子形成驻波;这意味着他的旋转频率只能呈某些离散数值。这些量子化轨道对应于离散能级。从这些点子,德布罗意复制出玻尔模型的能级。在1925年,瑞士苏黎世每两周会举办一场物理学术研讨会。有一次,主办者彼得·德拜邀请薛定谔讲述关于德布罗意的波粒二象性博士论文。那段时期,薛定谔正在研究气体理论,他从阅读爱因斯坦关于玻色-爱因斯坦统计的论述中,接触德布罗意的博士论文,在这方面有很精深的理解。在研讨会里,他将波粒二象性阐述的淋漓尽致,大家都听的津津有味。德拜指出,既然粒子具有波动性,应该有一种能够正确描述这种量子性质的波动方程。他的意见给予薛定谔极大的启发与鼓舞,他开始寻找这波动方程。检试此方程最简单与基本的方法就是,用此方程来描述氢原子内部束缚电子的物理行为,而必能复制出玻尔模型的理论结果,另外,这方程还必须能解释索末菲模型给出的精细结构。很快,薛定谔就通过德布罗意论文的相对论性理论,推导出一个相对论性波动方程,他将这方程应用于氢原子,计算出束缚电子的波函数。因为薛定谔没有将电子的自旋纳入考量,所以从这方程推导出的精细结构公式不符合索末菲模型。他只好将这方程加以修改,除去相对论性部分,并用剩下的非相对论性方程来计算氢原子的谱线。解析这微分方程的工作相当困难,在其好朋友数学家赫尔曼·外尔鼎力相助下,他复制出了与玻尔模型完全相同的答案。因此,他决定暂且不发表相对论性部分,只把非相对论性波动方程与氢原子光谱分析结果,写为一篇论文。1926年,他正式发表了这论文。这篇论文迅速在量子学术界引起震撼。普朗克表示“他已阅读完毕整篇论文,就像被一个迷语困惑多时,渴慕知道答案的孩童,现在终于听到了解答”。爱因斯坦称赞,这著作的灵感如同泉水般源自一位真正的天才。爱因斯坦觉得,薛定谔已做出决定性贡献。由于薛定谔所创建的波动力学涉及到众所熟悉的波动概念与数学,而不是矩阵力学中既抽象又陌生的矩阵代数,量子学者都很乐意地开始学习与应用波动力学。自旋的发现者乔治·乌伦贝克惊叹,“薛定谔方程给我们带来极大的解救!”沃尔夫冈·泡利认为,这论文应可算是最重要的著作之一。薛定谔给出的薛定谔方程能够正确地描述波函数的量子行为。在那时,物理学者尚不清楚如何诠释波函数,薛定谔试图以电荷密度来诠释波函数的绝对值平方,可并不成功。1926年,玻恩提出概率幅的概念,成功地诠释了波函数的物理意义。但是薛定谔与爱因斯坦观点相同,都不赞同这种统计或概率方法,以及它所伴随的非连续性波函数坍缩。爱因斯坦主张,量子力学是个决定性理论的统计近似。在薛定谔有生的最后一年,写给玻恩的一封信中,他清楚地表示他不接受哥本哈根诠释。

你好,薛定谔方程是从自由粒子的波函数(复数形式)服从的方程猜想出来的,请参阅《量子力学导读》(浙江大学出版社)薛定谔方程是用算符化方法建立起来的,当然不是数学的逻辑地推导出来的,但只要找到合适的数学工具,不仅薛定谔方程可以推导出来,而且可以推导出单粒子体系和双粒子体系的相对论波动方程,当然这方面的研究成果尚未有人发表.我对量子论与狭义相对论的结合问题很有兴趣,事实上,在德布罗意那里量子论跟狭义相对论是触合的,德布罗意公式就是二者结合的产物.狭义相对论跟量子论的分离是从薛定谔那里开始的,克莱因和戈登沿着薛定谔的道路走下去,并试图纠正薛定谔对相对论的偏离,建立了相对论的克莱因-戈登方程,虽然此方程是有用的,但由于存在负几率困难,他们的工作没有成功.狄拉克继续沿此方向前进,他吸取了克莱因和戈登失败的教训,建立了著名的狄拉克方程,此方程竟然导出了电子的自旋,可惜只适用于单粒子体系.当他试图建立双粒子体系的相对论波动方程时,遇到很大困难,于是另擗途径,走量子场论的道路,在费曼等人的努力下,量子电动力学获得极大的成功.虽然量子场论的一般理论一度受到怀疑,由于杨-米耳斯场的引进,以及很多人的努力,弱电统一理论成功建立,使量子场论的成功达到了顶点.最近又有报到称量子场论的量子色动力学也取得了重大进展.因此,狭义相对论与量子论在量子场论中结合得如此成功,很自然使人们觉得在量子力学的框架内不可能使狭义相对论与量子论结合起来.但既然沿着薛定谔的道路即算苻化方法能建立起狄拉克方程,为什么就不能进一步沿此方向建立起双粒子体系的相对论波动方程呢?只要找到合适的数学工具并进行概念上的突破,就一定能实现这个目标.总之,量子论与狭义相对论一点都不矛盾,不仅在德布罗意那里,在狄拉克那里,在量子场论那里结合得很好,在量子力学的框架内也一定能结合起来,只要我们找到合适的数学工具.在我发表这个贴子的时侯,这样的数学工具其实我早已找到,并且已经建立了双粒子体系的相对论波动方程

从经典力学是推不出来的, 薛定谔方程是量子力学最基本的方程。 采用费曼的路径积分理论或者海森堡的矩阵力学,那么可以从量子力学导出薛定谔方程的。有时间,我帮你写写。

非线性电阻伏安特性的研究论文

电阻在通过其电流的情况下,阻值保持不变。二极管的正向电流随正向电压增加而巨增,反向几乎为零,但电压到某一值时,也将增加。通过小灯泡的电流越大,温度越高,其阻值越大。

这两种元件的电阻都可以用伏安法测量。但是,由于测量时电表被引入测量电路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减小系统误差。

扩展资料:

非线性电阻在某一工作点处电压增量△u与电流增量△I之比的极限,称为该工作点处的动态电阻,某工作点的动态电阻实际上就是特性曲线上该工作点的斜率。动态电阻的大小与工作点的位置有关。例如,图中工作点Q’处的动态电阻R’d为正,工作点Q”处的动态电阻R”d为负。

参考资料来源:百度百科-非线性电阻

简单的说:如果电阻元件两端的电流、电压关系为曲线,则这类电阻元件称为非线性电阻元件(如.热敏电阻、二极管等),这种元件的特点是电阻随加在它两端的电压改变而改变。一般均用伏安特性曲线来反映非线性电阻元件的特性。详细的说:若电阻元件的伏安特性为非线性的,则称为非线性电阻元件。含有非线性电阻元件的电路称为非线性电阻电路。非线性电阻的伏安特性一般用函数式表示,即u=g(i)(1-1)i=f(u)(1-2)其中g,f分别为i和u的非线性函数。对于式(1-1)而言,电阻两端的电压u是其中电流i的单值函数。这种电阻称为电流控制型电阻,简称流控电阻。充气二极管即具有这样的伏安特性。但要注意,对于同一的电压u值,电流i可能是多值的。例如当u=u0时,电流i就有三个不同的值i1,i2,i3。对于式(1-2)而言,电阻中的电流i是其两端电压u的单值函数。这种电阻称为电压控制型电阻,简称压控电阻。隧道二极管即具有这样的伏安特性。但要注意,对于同一的电流i值,电压u可能是多值的。例如i=i0时,电压u就有三个不同的值u1,u2,u3。另有一类非线性电阻,它既是流控的又是压控的,其典型伏安特性。此类非线性电阻的伏安特性既可用u=g(i)描述,也可用i=f(u)=g(u)描述,其中f为g的逆。曲线的斜率di/du对所有的u值都是正值,即为单调增长型的。白炽灯泡的伏安特性对坐标原点对称,具有双向性;半导体P-N结二极管的伏安特性对坐标原点不对称,具有单方向性,这种性质可用来整流和检波。还有一类非线性电阻,它既不是流控的,也不是压控的。理想半导体二极管的伏安特性即属此类,其数学描述为i=0u<0u=0i>0(1-3)由式(1-3)可见,由于在u<0时i=0,故此时理想半导体二极管相当于开路;在i>0时u=0,故此时理想半导体二极管相当于短路。

非线性电阻特性研究 实验内容 1.针对各种非线性电阻元件的特性,选择一定的实验方法,设计合适的检测电路,选择配套的实验器材,测绘出它们各自的伏安特性曲线。 2.学习从实验曲线获取有关信息的方法。 3.根据实验现象和结果,比较各种非线性电阻的特性,并从理论上进行分析讨论。 教学要求 1.任选两种以上的非线性元件,分别测出它们的伏安特性曲线、动态阻值,研究它们随电流等状态、环境参量变化的关系,得出拟合曲线方程。 2.在粗测的基础上,根据电阻特性,选择适当的实验检测电路,确定测量仪表的量程、等级,尽量减小测量不确定度。对同一元件选用两种不同的仪器和方法进行测量,比较分析它们对元件特性测量的影响。 实验器材 各种非线性元件(照明电珠,整流二极管,稳压二极管,发光二极管,光敏二极管,热敏电阻,硅光电池,低压氖泡等),电流表,电压表,稳压电源,变阻器,标准电阻,示波器,晶体管特性仪等(供选用) 实验提示 若电阻元件的伏安特性曲线呈直线,称为线性电阻;若呈曲线,称为非线性电阻。非线性伏安特性所反映出来的规律总是与一定的物理过程相联系的。利用非线性元件的特性可以研制各种新型的传感器、换能器,在温度、压力、光强等物理量的检测和自动控制方面都有广泛的应用。对非线性电阻特性及规律的研究,有助于加深对有关物理过程、物理规律及其应用的理解和认识。 1. 动态电阻 非线性电阻元件伏安特性曲线上某点切线的斜率,称为此电阻元件在该点(工作状态下)的动态电阻。记作 显然,线性电阻的动态电阻是常数,其值与按欧姆定律定义的直流电阻相等。而非线性电阻的动态电阻与直流电阻是不同的,非线性电阻的动态电阻是变量,是状态的函数,非线性电阻元件的动态电阻与功率的关系是它的一个重要性质。 2.若导体的温度保持不变,伏安特性曲线是一条直线。但是,当有电流流过导体时会被加热,进而温度升高,电阻增大,伏安特性曲线变成一条曲线。 3.非线性电阻元件的伏安特性及其反映的规律,总是与一定的物理过程相联系的。所以,研究非线性电阻元件的特性和规律,有助于对有关物理过程的认识和理解。 报告要求 1. 写明准备进行哪些项目的实验研究。 2. 写明所选用的实验方法、测量电路、仪器规格和具体实验程序。 3.对实验过程进行总结分析。 实验十五非线性元件伏安特性的测量 非线性元件伏安特性的研究 金属氧化物非线性电阻片伏安特性测试的研究 ,实验1%20线性与非线性元件%20%20伏安特性的测定 ,幻灯片%202

通过一个元件的电流随外加电压的变化关系曲线,称为伏安特性曲线。从伏安特性曲线所遵循的规律,可以得知该元件的导电特性,以便确定它在电路中的作用。

  • 索引序列
  • 非线性方程求根的迭代法研究论文
  • 线性方程组解法研究论文
  • 非齐次线性方程组毕业论文
  • 非线性薛定谔方程毕业论文
  • 非线性电阻伏安特性的研究论文
  • 返回顶部