• 回答数

    3

  • 浏览数

    205

松涛学大教育
首页 > 学术期刊 > 勒贝格积分论文参考文献

3个回答 默认排序
  • 默认排序
  • 按时间排序

凤凰来临

已采纳

“勒贝格的工作是20世纪的一个伟大贡献,确实赢得了公认,但和通常一样,也并不是没有遭到一定阻力的. ”——克兰“对许多数学家来说,我成了没有导数的函数的人,虽然我在任何时候也不曾完全让我自己去研究或思考这种函数. ” ——勒贝格勒贝格是法国数学家. 1875年6月28日生于博韦;1941年7月26日卒于巴黎. 勒贝格在博韦读完中学后,于1894年入巴黎高等师范学校攻读数学,并成为博雷尔的学生,1897年获该校硕士学位. 毕业后曾在南希一所中学任教. 1902年在巴黎大学通过博士论文答辩,取得哲学博士学位. 1902—1906年任雷恩大学讲师. 从1906年起先后在普瓦蒂埃大学、巴黎大学、法兰西学院任教,1919年晋升为教授. 1922年当选为法国科学院院士. 1924年成为伦敦数学会荣誉会员. 1934年被选为英国皇家学会会员. 他还是前苏联科学院的通讯院士. 勒贝格是20世纪法国最有影响的分析学家之一,也是实变函数论的重要奠基人. 勒贝格的成名之作是他的论文《积分,长度,面积》(1902年)和两本专著《论三角级数》(1903年)、《积分与原函数的研究》(1904年). 在《积分,长度,面积》中,第一次阐明了他关于测度和积分的思想. 他的工作使19世纪在这个领域的研究大为改观,特别是在博雷尔测度的基础上建立了“勒贝格测度”,并以此为基础对积分的概念作了最有意义的推广:即把被积函数f(x阿)定义的区间分成若干个勒贝格可测集,然后同样作积分和,那么原来划分子区间方法的积分和如果不收敛,则现在划分为可测集的方法就有可能收敛. 于是按黎曼意义不可积的函数,在勒贝格意义下却变得可积. 他在《积分与原函数的研究》中还证明了有界函数黎曼可积的主要条件是不连续点构成一个零测度集,因此从另外一个角度给出了黎曼可积的主要条件. 要想从一个不太抽象的角度,用几句话就能概括勒贝格测度和勒贝格积分的概念及其在近代数学中的巨大作用,是极为困难的. 可以这样说,大家熟知的黎曼积分有如下若干缺点,严重地限制了积分概念在自然科学中的应用. 第一,黎曼积分中的被积函数只能是定义在实直线R的闭区间上(或Rn的闭连通区域上)的实值函数,但实际上有用的函数f ,其定义域可以是R或Rn的某些适当的子集. 第二,黎曼可积的函数类甚为狭小,基本上是“分段连续函数”构成的函数类. 第三,许多收敛的黎曼函数序列,其极限函数却不是黎曼可积的,即使是黎曼可积的,但积分与求极限的过程也不是随便可交换的. 这些缺点不仅在泛函分析中导致严重困难,而且在无穷级数的逐项积分这种简单问题上也导致了严重的困难. 正是勒贝格在20世纪初开创的这些工作为扫除这些障碍提供了理论工具. 按照勒贝格意义下的积分,可积函数类大大地扩张了;积分区域可以是比闭连通域复杂得多(R或Rn)的子集;收敛性的困难大大地减少了. 勒贝格曾对他的积分思想作过一个生动有趣的描述:“我必须偿还一笔钱. 如果我从口袋中随意地摸出来各种不同面值的钞票,逐一地还给债主直到全部还清,这就是黎曼积分;不过,我还有另外一种作法,就是把钱全部拿出来并把相同面值的钞票放在一起,然后再一起付给应还的数目,这就是我的积分. ”勒贝格积分的理论是对积分学的重大突破. 用他的积分理论来研究三角级数,很容易地得到了许多重要定理,改进了到那时为止的函数可展为三角级数的充分条件. 紧接着导数的概念也得到了推广,微积分中的牛顿—莱布尼茨公式也得到了相应的新结论,一门微积分的延续学科—实变函数论在他手中诞生了. 勒贝格的理论,不仅是对积分学的革命,而且也是傅里叶级数理论和位势理论发展的转折点. 勒贝格还提出了因次理论;证明了按贝尔(Baire)范畴各类函数的存在;在拓扑学中他引入了紧性的定义和紧集的勒贝格数. 他的覆盖定理是对拓扑学的一大贡献. 美国数学史家克兰(kline)说:“勒贝格的工作是本世纪的一个伟大贡献,确实赢得了公认,但和通常一样,也并不是没有遭到一定的阻力的. ”例如,数学家埃尔米特曾说:“我怀着惊恐慌的心情对不可导函数的令人痛惜的祸害感到厌恶. ”当勒贝格写一篇讨论不可微曲面《关于可应用于平面的非直纹面短论》论文,埃尔米特就极力阻止它发表. 勒贝格从1902年发表第一篇论文《积分,长度,面积》起,有近十年的时间没有在巴黎获得职务,直到1910年,才被同意进入巴黎大学任教. 勒贝格在他的《工作介绍》中感慨地写道:“对于许多数学家来说,我成了没有导数的函数的人,虽然我在任何时候也不曾完全让我自己去研究或思考这种函数. 因为埃尔米特表现出来的恐惧和厌恶差不多每个人都会感觉到,所以任何时候,只要当我试图参加一个数学讨论会时,总会有些分析家说:‘这不会使你感兴趣的,我们在讨论有导数的函数. ’或者一位几何学家就会用他的语言说:‘我们在讨论有切平面的曲面. ’”但到了20世纪30年代,勒贝格积分论已广为人知,并且在概率论、谱理论、泛函分析等方面获得了广泛的应用. 勒贝格具有基于直观几何的深刻洞察力. 他的工作开辟了分析学的新时代,对20世纪数学产生了极为深远的影响. 他的论文收集在《勒贝格全集》(5卷)中. 在数学中以他的姓氏命名的有:勒贝格函数、勒贝格测度、勒贝格积分、勒贝格积分和、勒贝格空间、勒贝格面积、勒贝格准则、勒贝格数、勒贝格点、勒贝格脊、勒贝格链、勒贝格谱、勒贝格维数、勒贝格分解、勒贝格分类、勒贝格不等式等,而以他的姓氏命名的定理有多种.

139 评论

少年卡米

1. 生活中处处有数学 2、解数学竞赛题的整体策略 3、谈数学解题中发掘隐含条件的若干途径4、论数学教育中性别差异的影响 5、逆向思维在数学论证中的作用及培养6、谈小学、初中数学的衔接 7、容斥原理及其应用8、从高中课程改革看大学课程改革 9、信息化教育问题10、数学素质教育中的教师素质问题 11. 浅析课堂教学的师生互动12、谈设疑法在课堂教学中的应用 13、计算机辅助小学数学教学的探索 14、谈一类重要的数学方法--分类讨论法15、小学数学竞赛题的教育价值16、在解题中培养学生的数学直觉思维 17. 反思教学中的一题多解18. 初探影响解决数学问题的心理因素 19、在数学教学中培养学生的反思意识 20、关于探索性命题的若干问题 21、数学实验教学模式探究22、论小学数学竞赛题的解题方法 23、奥林匹克数学的解题策略24、三角形面积在竞赛中的应用 25. 数学教育中的科学人文精神 26. 数学几种课型的问题设计 27. 在探索中发展学生的创新思维 28. 把握发现式教学实质,优化课堂教学 29. 如何评价小学学生的数学素质 30. 阅读材料在数学教学中的作用 31. 数学中的判断之我见 32. 关于学生数学能力培养的几点设想 33. 反例在数学中的作用 34. 谈谈类比法 35. 数学教学设计随笔 36. 数学CAI应遵循的原则 37. 我国数学教育改革的若干问题 38. 当代数学教学模式的发展趋势 39. “问题解决教学”的实践与认识 40. 数学教学中的“理论联系实际” 41. 小学数学课堂教学探究性学习案例简析 42. 数学训练,贵在科学 43. 教学媒体在数学教学中的作用 44. 培养数学能力的重要性和基本途径 45. 初探在数学教学中开展研究性学习 46. 浅谈数学学习兴趣的培养 47. 如何使计算机辅助教学变得更方便 48. 精心设计习题,提高教学质量 49. 我对概念教学的的再认识 50. 数学教学中的情境创设 51. 结合数学教学实际开展教研教改 52. 为学生展开想象的翅膀创造环境 53. 利用习题变换,培养思维能力 54. 课堂教学中培养学生创造能力的尝试 55. 观察法及其在数学教育研究中的应用 56. 直觉思维在解题中的运用 57. 数学方法论与数学教学—案例三则 58. 概念课是思维训练的重要环节 59. 对概念导入和问题设计的思考 60. 把握概念本质注重思维能力的培养 61. 将研究性学习引入数学课堂教学 62. 数学教学的现代研究 63. 数学探究性活动的内容、形式及教学设计 64. 注重创新性试题的设计 以上为参考论文选题,学生写论文时可选用,也可按选题提供的范围和方向,根据自己教学过程中体会最深的某方面自定论文选题1.关于数学教学目的问题; 2.关于数学思维问题; 3.关于数学教学方法问题; 4.关于学习的迁移问题; 5.关于数学教学的评价问题; 6.关于熟练技能与深刻理解的关系问题; 7.数学的实用功能与数学的文化教育功能相关关系的研究; 8.数学教学的德育功能研究; 9.班级授课制中集体教学、小组教学和个别教学在数学教学中的地位和作用; 10.数学发现法(探究式)教学可实施的基本内容、对象和范围; 11.对数学教学中“可接受性原则”的认识及其具体做法的实验研究; 12.中学生数学学习习惯与学习方法的调查分析; 13.诊断和鉴别数学学习困难学生的方法探析; 14.数学智力因素与数学非智力因素的界定及其对学生学习成绩交互作用的研究; 15.数学教学中激发学生学习兴趣的内在机制和外部因素的研究; 16.教法与学法的双向作用研究; 17.学生“用数学”意识和能力的形成机制以及培养途径的实验研究; 18.数学新课程实施中转变学生学习方式的途径; 19.学生数学观念或数学意识的形成机制和培养途径的实验研究; 20.创设良好的数学教学心理氛围与提高数学教学质量相关关系 的研究。 21.中学数学教育的地位与作用。 22.形象思维与数学教学。 23.直观思维与数学教学。 24.非智力因素与数学学习。 25.数学美与数学教学。 26.在数学教学中怎样培养学生的数学能力。 27.数学作图及图形的教学。 28.数学解题错误的探讨。 29.怎样配备数学习题。 30.数学解题常用的一些思维方法。 31.怎样提高学生的自学能力。 32.怎样培养学生学习数学的兴趣。二、《概率论与数理统计》参考题 1.有关概率论发展的历史。 2.随机性与必然的数学基础与认识。 3.随机变量的直观认识与数学描述。 4.古典概率型的计算技巧。 5.几何概率型的分析处理。 6.有关概率论之介绍。 7.概率论中数学期望概念。 8.利用期望概率统一引人矩阵概率。 9.期望概率在概率论中的地位和作用。 10.特征函数与因数在概率论中的作用及其含义。 11.关于独立性。 12.大数定律与中心定律之含义。 13.大数定律与概率的统计定义。 14.有关概率不等式。 15.条件概率与条件期望。 16.Bayes公式的扩展。 17.概率在其它学科中的应用。 18.其它数学分支在概率论中的应用。 19.概率题目计算的多解性。 20.数理统计概念。 21.数理统计的过去与现在。 22.数理统计在客观现实中的作用。 23.假设检验的实质与作用。 24.参数估计的作用与处理方法。 25.数理统计在你自己工作实践中的应用(实例)。 26.学习概率统计的实践与体会。 27.概率统计中的错题分析。 28.如果我讲概率统计的话,我将这样讲(要求具体详细,资料充实,结构新颖)。 29.利用回归分析方法处理问题。 30.回归分析理论中存在的问题与解决的设想。三、《微分几何》参考题 1.空间曲线的基本公式及其在曲线论中的作用。 2.渐近线与渐缩线。 3.空间曲线弯曲性的研究。 4.曲率与挠率。 5.曲面的第一基本形式在曲面论中的作用。 6.等矩映象与曲面的内在几何。 7.曲面的第二基本形式在曲面论中的作用。 8.曲面上的曲率线,渐近曲线,测地线。 9.曲面的内在几何与外在几何的相依性。 10.曲面内的基本定理与曲线论的基本定理的比较(相仿之处与不同之处)。 11.高斯曲率的意义与作用。 12.等矩映射与等角映射及等积映射的关系。 13.高斯与波涅公式的意义与作用。 14.伪球面与罗氏几何。四、《复变函数》参考题 1.复变函数在一点解析的等价定义。 2.幅角多值性所导出的问题汇集。 3.小结复变函数的积分。 4.解析与调和函数的关系。 5.漫谈复数∞。 6.0,∞与函数 7.多值函数单值分支的表达与计算。 8.分式线性函数全体对乘法——函数复合——构成群。 9.∞和∞邻域的引进使扩充复平面的为紧空间。 lo.等比级数 ,在函数的泰勒展开式和罗朗展开式中的作用。 11.谈复数的比较大小问题。 五、《实变函数》参考题, 1.关于积分号下取极限(积分与极限交换次序问题)。 ①在什么条件下可以积分号下取极限,是积分的一个重要性质,例 如关系到微积分基本定理成立的条件,函数项级数和的性质等等。 ②列举勒贝格积分和黎曼积分在几个问题上的基本结论,分析其 中最基本的要求和相互关系(书上P146第6题可供参考),可以发现勒贝格积分在这方面比黎曼积分好得多,而且是用勒贝格积分的主要好处之一。 ③给出上述基本结论的简单推论,新的证明方法应用例题,并说明它们的意义。 2.关于微积分基本定理(牛顿一菜布尼兹公式) ①什么是微积分基本定理,它的重要意义在哪里? ②黎曼积分情形,相应定理的条件是什么?有什么不足之处? ③勒贝格积分情形,相应的定理的结论和条件又是怎样的?条件减弱在哪里?还有什么问题? ④应用例题。 3.关于绝对连续函数。 ①绝对连续的定义是什么?有些什么等价说法或充分必要条件,并证明之。绝对连续与连续、一致连续有什么不同,有什么关系。 ②证明绝对连续函数列一致收敛的极限,可微函数与绝对连续函 数复合,仍为绝对连续的。 ③绝对连续函数几乎处处可微,能否做到处处可微?举例!绝对连续函数与它的导致关系如何,与微积分基本定理有什么关系。 ④绝对连续函数全体组成线性空间。 4.关于勒贝格积分。 ①试将关于勒贝格积分的定义综合起来,做出一个统一,一般的勒贝格积分定义,并说明勒贝格积分仍然是“分割、求积、取极限”的结果,勒贝格积分的“分割”与黎曼积分又有何根本不同之处? ②说明勒贝格积分在几何上仍是“曲边梯形的面积”。 ③证明对于勒贝格积分,也和黎曼积分一样,无界函数的积分(广 义积分)和无界区域上的积分(无穷积分),都是有界函数在有界域上的积分的极限。 ④勒贝格积分有哪些黎曼积分所没有的重要性质。从积分的定义看,是什么原因导致这两类积分有许多重大差别。 ⑤勒贝格积分有许多重要性质,带来一些什么好处? 5.关于测度。 ①总结定义点集的勒贝格测度的过程,并与数学分析中定义区域的面积的过程(重积分前面部分)作比较,分析其中不同之处,以及为什么因为这些不同,导致黎曼积分和勒贝格积分在性质上有许多重大差别。 ②说明勒贝格测度长度、面积、体积概念的推广,当平面区域可求面积时,它的面积和勒贝格测度相等。 ③列举勒贝格测度的重要性质,说明它们与勒贝格积分性质的关 系(例如测度的可数可加性与积分的可数可加性有什么关系,单调集列极限的测度(定理3、2、6~3、2、10)与勒维定理(定理5、4、2的关系)。 6.关于可测函数。 ①可测函数与连续函数,可积函数从定义上、性质上看有什么关系和差别。 ②全体可测函数构成线性空间,构成环。 ③试说明鲁金定理的意义,以及它与黎斯定理、叶果洛夫定理的关系。你如何理解“可测函数近于连续函数”及其理由。 7.关于可测函数列的各种收敛概念。 ①试述实变函数论中及数学分析中讲过的各种收敛概念的定义和性质、互相之间的关系。以及引进这些概念的意义和用处。 ②从黎斯定理和叶果洛夫定理出发说明,你怎么理解“几乎处处收敛,近乎一致收敛”。 8.关于点集上的连续函数。 ①定义,性质。 ②与数学分析中讲的连续的关系。 9.集合论和点集论的方法在实变函数论中的意义。 从一些具体例子出发说明,为了解决数学分析中一些结果不够完善的问题,如推广它们的结论,有必要用这种方法去研究函数,用它也确实有好的效果。说明集合论是测度论和积分论的基础。 以上问题,除参考.所用教材外,还可参考程其襄等编《实变函数与泛函分析基础》。朱玉楷编《实变函数简编》等有关书籍资料。

188 评论

纳木错dolphin

教育专业毕业论文题目只是需要题目吗?论文呢?

200 评论

相关问答

  • 大体积混凝土论文参考文献

    有两篇,你看着修改吧混凝土裂缝的预防与处理 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对

    热腾腾的鱼粥 2人参与回答 2023-12-05
  • 勒贝格积分论文参考文献

    “勒贝格的工作是20世纪的一个伟大贡献,确实赢得了公认,但和通常一样,也并不是没有遭到一定阻力的. ”——克兰“对许多数学家来说,我成了没有导数的函数的人,虽然

    松涛学大教育 3人参与回答 2023-12-09
  • 积极分子结业论文格式

    一般党课结束后都会有要求的,我们就是负责人统一给弄的。要有封皮,从上往下依次是学校、第xx期大学生业余党校、毕业论文、题目:、作者、专业、年级、日期。正文要有题

    WSY-recording 3人参与回答 2023-12-10
  • 语言积累论文参考文献

    对于一篇论文来说,引用参考文献是不可避免的,而参考文献格式也是有一定格式,以下是我通常使用的文献引用格式,可以参考一下。 首先,我们需要明确引用文献分脚注、尾注

    一个老神仙 4人参与回答 2023-12-09
  • 定积分论文

    很多同学想写数学相关的手抄报,我整理了一些数学家的人生故事,大家一起来看看吧。 我国最早的女数学家班昭,字惠班,东汉安陵人(今陕西省咸阳县人),是班彪的女儿,班

    微尘8313 3人参与回答 2023-12-09