我是不是很S
随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。
一、高等数学在地方高等职业教育中遇到的问题及解决办法
(一)数学师资力量短缺,教师学历偏低
地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。
(二)学生对数学课重要性认识不够,学习热情不高
目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。
(三)高等数学课程设置不合理,教学与实际应用脱节
由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。
二、总结
高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。
一、网络教育高等数学的现状分析
1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。
2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。
二、网络教育高等数学的教学初探
教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:
1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。
2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。
haohao开心
高中关于概率论教学探究论文摘要:将数学史引入课堂、在教学中广泛应用案例、积极开展随机试验以及引导学生主动探索等,有助于改进概率论教学方法,解决教学实践问题,提高教学质量.教学手段的多样化以及丰富的教学内容可以加深学生对客观随机现象的理解与认识,并激发学生自主学习和主动探索的精神.关键词:概率论;教学;思维方法在数学的历史发展过程中出现了3 次重大的飞跃.第一次飞跃是从算数过渡到代数,第二次飞跃是常量数学到变量数学,第三次飞跃就是从确定数学到随机数学.现实世界的随机本质使得各个领域从确定性理论转向随机理论成为自然;而且随机数学的工具、结论与方法为解决确定性数学中的问题开辟了新的途径.因此可以说,随机数学必将成为未来主流数学中的亮点之一.概率论作为随机数学中最基础的部分,已经成为高校中很多专业的学生所必修的一门基础课.但是教学过程中存在的一个主要问题是:学生们往往已经习惯了确定数学的学习思维方式,认为概率中的基本概念抽象难以理解,思维受限难以展开.这些都使得学生对这门课望而却步,因此如何在概率论的教学过程中培养学生学习随机数学的思维方法就显得十分重要.本文拟介绍我们在该课程教学中的改革尝试,当作引玉之砖.1 将数学史融入教学课堂在概率论教学过程当中,介绍相关的数学史可以帮助学生更好地认识到概率论不仅是“ 阳春白雪” ,而且还是一门应用背景很强的学科.比如说概率论中最重要的分布——正态分布,就是在18 世纪,为解决天文观测误差而提出的.在17、18 世纪,由于不完善的仪器以及观测人员缺乏经验等原因,天文观测误差是一个重要的问题,有许多科学家都进行过研究.1809年,正态分布概念是由德国的数学家和天文学家德莫弗(DeMoivre)于1733 年首次提出的,德国数学家高斯(Gauss)率先将正态分布应用于天文学研究,指出正态分布可以很好地“ 拟合” 误差分布,故正态分布又叫高斯分布.如今,正态分布是最重要的一种概率分布,也是应用最广泛的一种连续型分布.在1844 年法国征兵时,有许多符合应征年龄的人称自己的身高低于征兵的最低身高要求,因而可以免服兵役,这里面一定有人为了躲避兵役而说谎.果然,比利时数学家凯特勒(A. Quetlet,1796—1874)就是利用身高服从正态分布的法则,把应征人的身高的分布与一般男子的身高分布相比较,找出了法国2000 个为躲避征兵而假称低于最低身高要求的人[1].在大学阶段,我们不仅希望通过数学史在教学课堂中的呈现来引起学生学习概率论这门课程的兴趣,更应侧重让学生通过兴趣去深入挖掘数学史,感受随机数学的思想方法[2].我们知道概率论中的古典概型要求样本空间有限,而几何概型恰好可以消除这一条件,这两种概型学生理解起来都很容易.但是继而出现的概率公理化定义,学生们总认为抽象、不易接受.尤其是概率公理化定义里出现的σ 代数[3]这一概念:设Ω 为样本空间,若Ω 的一些子集所组成的集合? 满足下列条件:(1)Ω∈? ;(2)若A∈ ? ,则A∈ ? ;(3)若∈ n A ? ,n =1, 2,??,则∈∞=nnA ∪1? ,则我们称 ? 为Ω 的一个σ 代数.为了使学生更好的理解这一概念,我们可以引入几何概型的一点历史来介绍为什么要建立概率的公理化定义,为什么需要σ 代数.几何概型是19 世纪末新发展起来的一种概率的计算方法,是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.1899 年,法国学者贝特朗提出了所谓“ 贝特朗悖论” [3],矛头直指几何概率概念本身.这个悖论是:给定一个半径为1 的圆,随机取它的一条弦,问:弦长不小于3 的概率为多大?对于这个问题,如果我们假定端点在圆周上均匀分布,所求概率等于1/3;若假定弦的中点在直径上均匀分布,所求概率为1/2;又若假定弦的中点在圆内均匀分布,则所求概率又等于1/4.同一个问题竟然会有3 种不同的答案,原因在于取弦时采用了不同的等可能性假定!这3 种答案针对的是3 种不同的随机试验,对于各自的随机试验而言,它们都是正确的.因此在使用“ 随机” 、“ 等可能”、“ 均匀分布” 等术语时,应明确指明其含义,而这又因试验而异.也就是说我们在假定端点在圆周上均匀分布时,就不能考虑弦的中点在直径上均匀分布或弦的中点在圆内均匀分布所对应的事件.换句话讲,我们在假定端点在圆周上均匀分布时,只把端点在圆周上均匀分布所对应的元素看成为事件.现在再来理解σ -代数的概念:对同一个样本空间Ω ,?1 ={?, Ω}为它的一个σ 代数;设A为Ω 的一子集,则 ?2 ={?, A, A, Ω}也为Ω 的一个σ 代数;设B 为Ω 中不同于A的另一子集,则?3 = {?, A,B, A,B, AB, AB,BA,AB,Ω}也为Ω 的一个σ 代数;Ω 的所有子集所组成的集合同样能构成Ω 的一个σ 代数.当我们考虑?2 时,就只把元素?2 的元素? , A , A , Ω 当作事件,而B 或AB 就不在考虑范围之内.由此σ 代数的定义就较易理解了.2 广泛运用案例教学法案例与一般例题不同,它有产生问题的实际背景,并能够为学生所理解.案例教学法是将案例作为一种教学工具,把学生引导到实际问题中去,通过分析和讨论,提出解决问题的基本方法和途径的一种教学方法.我们可以从直观性、趣味性和易于理解的角度把概率论基础知识加以介绍.我们在讲条件概率一节时可以先介绍一个有趣的案例——“ 玛丽莲问题” :十多年前,美国的“ 玛利亚幸运抢答”电台公布了这样一道题:在三扇门的背后(比如说1 号、2号及3 号)藏了两只羊与一辆小汽车,如果你猜对了藏汽车的门,则汽车就是你的.现在先让你选择,比方说你选择了1 号门,然后主持人打开了剩余两扇门中的一个,让你看清楚这扇门背后是只羊,接着问你是否应该重新选择,以增大猜对汽车的概率?由于这个问题与当前电视上一些娱乐竞猜节目很相似,学生们就很积极地参与到这个问题的讨论中来.讨论的结果是这个问题的答案与主持人是否知道所有门背后的东西有关,这样就可以很自然的引出条件概率来.在这样热烈的气氛里学习新的概念,一方面使得学生的积极性高涨,另一方面让学生意识到所学的概率论知识与我们的日常生活是息息相关的,可以帮助我们解决很多实际的问题.因此在介绍概率论基础知识时,引进有关经典的案例会取得很好的效果.例如分赌本问题、库存与收益问题、隐私问题的调查、概率与密码问题、17 世纪中美洲巫术问题、调查敏感问题、血液检验问题、1992 年美国佛蒙特州州务卿竞选的概率决策问题,以及当前流行的福利彩票中奖问题,等等[4].概率论不仅可以为上述问题提供解决方法,还可以对一些随机现象做出理论上的解释,正因为这样,概率论就成为我们认识客观世界的有效工具.比如说我们知道某个特定的人要成为伟人,可能性是极小的.之所以如此,一个原因是由于某人的诞生是一系列随机事件的复合:父母、祖父母、外祖父母……的结合、异性的两个生殖细胞的相遇,而这两个细胞又必须含有某些产生天才的因素.另一个原因是婴儿出生以后,各种偶然遭遇在整体上必须有利于他的成功,他所处的时代、他所受的教育、他的各项活动、他所接触的人与事以及物,都须为他提供很好的机会.虽然如此,各时代仍然伟人辈出.一个人成功的概率虽然极小,但是几十亿人中总有佼佼者,这就是所谓的“ 必然寓于偶然转自之中” 的一种含义.如何用概率论的知识解释说明这个问题呢?设某试验中事件A出现的概率为ε ,0 <ε <1,不管ε 如何小,如果把这试验不断独立重复做任意多次,那么A 迟早会出现1次,从而也必然会出现任意多次.这是因为,第一次试验A不出现的概率为(1?ε )n ,前n 次A 都不出现的概率为1? (1?ε )n,当n 趋于无穷大时,此概率趋于1,这表示A迟早出现1 次的概率为1.出现A 以后,把下次试验当作第一次,重复上述推理,可见A 必然再出现,如此继续,可知A必然出现任意多次.因此,一个人成为伟人的概率固然非常小,但是千百万人中至少有一个伟人就几乎是必然的了[5].3 积极开展随机试验随机试验是指具有下面3 个特点的试验:(1)可以在相同的条件下重复进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在讲授随机试验的定义时,我们往往把上面3 个特点一一罗列以后,再举几个简单的例子说明一下就结束了,但是在看过一期国外的科普短片以后,我们很受启发.节目内容是想验证一下:当一面涂有黄油,一面什么都没有涂的面包从桌上掉下去的时候,到底会哪一面朝上?令我们没有想到的是,为了让试验结果更具说服力,实验人员专门制作了给面包涂黄油的机器,以及面包投掷机,然后才开始做试验.且不论这个问题的结论是什么,我们观察到的是他们为了保证随机试验是在相同的条件下重复进行的,相当严谨地进行了试验设计.我们把此科普短片引入到课堂教学中,结合实例进行分析,并提出随机试验的3 个特点,学生接受起来十分自然,整个教学过程也变得轻松愉快.因此,我们在教学中可以利用简单的工具进行实验操作,尽可能使理论知识直观化.比如全概率公式的应用演示、几何概率的图示、随机变量函数的分布、数学期望的统计意义、二维正态分布、高尔顿钉板实验等,把抽象理论以直观的形式给出,加深学生对理论的理解.但是我们不可能在有限的课堂时间内去实现每一个随机试验,因此为了有效地刺激学生的形象思维,我们采用了多媒体辅助理论课教学的手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,建立一个图文并茂、声像结合、数形结合的生动直观的教学环境,从而拓宽学生的思路,有利于概率论基本理论的掌握.与此同时,让学生在接受理论知识的过程中还能够体会到现代化教学的魅力,达到了传统教学无法实现的教学效果[6].4 引导学生主动探索传统的教学方式往往是教师在课堂上满堂灌,方法单一,只重视学生知识的积累.教师是教学的主体,侧重于教的过程,而忽视了教学是教与学互动的过程.相比较而言,现代教学方法更侧重于挖掘学生的学习潜能,以最大限度地发挥及发展学生的聪明才智为追求目标.例如,在给出条件概率的定义以后,我们知道当P(A) > 0时,P(B | A)未必等于P(B).但是一旦P(B | A) =P(B),也就说明事件A的发生不影响事件B的发生.同样当P(B) > 0时,若P(A| B) = P(A),就称事件B的发生不影响事件A 的发生.因此若P(A) > 0 , P(B) > 0 ,且P(B | A) = P(B)与P(A| B) = P(A)两个等式都成立,就意味着这两个事件的发生与否彼此之间没有影响.我们可以让学生主动思考是否能够如下定义两个事件的独立性:定义1:设A,B 是两个随机事件,若P(A) > 0 ,P(B) > 0,我们有P(B | A) = P(B)且P(A| B) = P(A),则称事件A 与事件B 相互独立.接下来,我们可以继续引导学生仔细考察定义1 中的条件P(A) > 0 与P(B) > 0 是否为本质要求?事实上,如果P(A) > 0,P(B) > 0,我们可以得到:P(B | A) = P(B) ? P(AB) = P(A)P(B) ? P(A| B) = P(A).但是当P(A) = 0,P(B) = 0时会是什么情况呢?由事件间的关系及概率的性质,我们知道AB ? A, AB ? B,因此P(AB) = 0 = P(A)P(B),等式仍然成立.所以我们可以舍去定义1中的条件P(A) > 0,P(B) > 0,即如下定义事件的独立性:定义2 : 设A , B 为两随机事件, 如果等式P(AB) = P(A)P(B)成立,则称A,B为相互独立的事件,又称A,B 相互独立.很显然,定义2 比定义1 更加简洁.在这个定义的寻找过程中,我们不仅能够鼓励学生积极思考,而且可以很好地培养和锻炼学生提出问题、分析问题以及解决问题的能力,从而体会数学思想,感受数学的美.5 结 束 语通过实践我们发现,将数学史引入课堂既能让学生深入了解随机数学的形成与发展过程,又切实感受到随机数学的思想方法;把案例应用到教学当中以及在课堂上开展随机试验可以将概率论基础知识直观化,增加课程的趣味性,易于学生的理解与掌握;引导学生主动探索可以强化教与学的互动过程,激发学生用数学思想来解决概率论中遇到的问题.总之,在概率论的教学中,应当注重培养学生建立学习随机数学的思维方法,通过教学手段的多样化以及丰富的教学内容加深学生对客观随机现象的理解与认识.另外,要以人才培养为本,实现以教师为主导,学生为主体的主客体结合的教学思想,将培养学生实践能力、创新意识与创新能力的思想落到实处,以期达到学生受益最大化的目标,为学生将来从事经济、金融、管理、教育、心理、通信等学科的研究打下良好的基础.[参 考 文 献][1] C·R·劳.统计与真理[M].北京:科学出版社,2004.[2] 朱哲,宋乃庆.数学史融入数学课程[J].数学教育学报,2008,17(4):11–14.[3] 王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,2007.[4] 张奠宙.大千世界的随机现象[M].南宁:广西教育出版社,1999.[5] 王梓坤.随机过程与今日数学[M].北京:北京师范大学出版社,2006.[6] 邓华玲,傅丽芳,任永泰.概率论与数理统计实验课的探讨与实践[J].大学数学,2008,24(2):11–14.建立数学创造性意识的学习氛围论文论文关键词:创造性思维;培养;协同培养 论文摘要:本文论述了创造性思维研究的现状,简单梳理了创造性思维研究的几种观点,并鉴于实践中对于创造性思维研究的成果的应用,列举了五种较为流传的创造……剖析高中平面向量授课方式研究论文【摘要】本文通过对高中第五章平面向量的研究,从运算的角度,教学内容、要求、重难点,本章的特点三个方面进行了总结,得出了五个方面的教学体会。 【关键词】平面向量;数形结合;向量法;教学体会……培养学生数学时刻使用意识研究论文[摘要]培养数学应用意识,促进知识内化,达到发展学生智慧的目的,是当前小学数学教学中人们关注的一个热点问题。本文从培养学生数学应用意识的理论依据及探索实践这两个方面对如何发展学生智慧问题进行探讨。……高中关于概率论教学探究论文摘要:将数学史引入课堂、在教学中广泛应用案例、积极开展随机试验以及引导学生主动探索等,有助于改进概率论教学方法,解决教学实践问题,提高教学质量.教学手段的多样化以及丰富的教学内容可以加深学生对客观……
雁儿小妞宝
统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。下文是我为大家整理的关于统计相关论文的范文,欢迎大家阅读参考!
浅谈概率在统计学中的应用
摘 要:概率是研究随机现象的数学学科,其理论严谨、 应用广泛、 发展迅速。目前,概率的理论与方法已广泛应用于 统计学中,主要是从正态分布、小概率事件两方面介绍了概率在统计学中的一些应用。
关键词:随机现象;事件;样本;母体;正态分布;小概率原理
统计学主要分为描述性统计学和推断性统计学。给定一组数据统计学可以摘要并且描述这些数据,这个用法称为描述性统计学。另外,观察者以数据的形式建立起一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体,这种用法被称为应用统计学。另外,还有一个叫做数理统计学的学科专门用来讨论这门科目背后的理论基础。
同一仪器多次测量同一物体的重量,所得的结果彼此总是略有差异,这是由于诸如测量仪器受大气影响,观察者身体或 心理上的变化等等偶然因素引起的。同样的,同一门炮向同一目标发射多发同种炮弹,弹落点也不一样,因为炮弹制造时的种种偶然因素对炮弹质量也会有影响。此外,炮筒位置的误差,天气条件的微小变化等等都影响弹落点。再如从某生产线上用同一种工艺生产出来的灯泡寿命也是有差异的等等。
总之所举这些现象的一个共同点是:在基本条件不变的情况下,经过一系列试验或观察会得到不同的结果。换句话说,就个别的试验结果或观察结果而言,它会时而出现这种结果,时而出现那种结果,呈现出一种偶然性。这种现象称为随机现象。对于随机现象通常关心的是在试验或观察中某个结果是否出现,这种结果称为随机事件,简称事件。为了实际的理由选择研究团体的子集代替研究母体的每一笔资料,这个子集称作样本。推论统计学被用来将资料中的数据模型化,计算它的几率并且做出对于母体的推论,这个推论可能以对或错的答案呈现(假设检验)出对未来观察的预测,关联性的预测,或是将关系模式化(回归)。
随机现象有其偶然性的一面,也有其必然性的一面。这种必然性表现为大量试验中随机事件出现的频率的稳定性,即一个随机事件的频率常在某个固定的常数附近摆动,这种规律我们称之为统计规律性。频率的稳定性说明随机事件发生的可能性的大小是随机事件本身所固有的,不随人们的意志而改变的一种客观属性,因此可以对它进行度量。对于一个随机事件A用一个数p(A)来表示该事件发生的可能性的大小,这个数p(A)就称为随机事件A的概率,因此概率度量了随机事件发生的可能性的大小。
如果样本足以代表母体,那么由样本所做的推论和结论可以引申到整个母体之上,统计学提供了许多方法来估计和修正样本资料过程中的随机性(误差)。要了解随机性的一定几率必须具备基本的数学观念。数理统计是应用数学的分支,它使用几率论来分析并且验证统计的理论基础。
概率在统计学中有着重要的作用,包括总体、抽样研究、统计描述、统计推断、正态分布规律等,正态分布是概率中最重要的一种分布。一方面正态分布是自然界最常见的一种分布,例如测量的误差;炮弹弹落点的分布;人的生理特征的尺寸:身长、体重等;农作物的收获量;工厂产品的尺寸:直径、长度、宽度、高度,都近似服从正态分布。
一般来说若影响某一个数量指标的随机因素很多,而每个因素所起的作用又不太大,则服从正态分布这点可以用概率论的极限定理来加以证明。另一方面正态分布具有许多良好的性质,许多分布可用正态分布来近似,另外一些分布又可由正态分布来导出,因此在理论研究中,正态分布十分重要。如利用正态分布规律统计学校的成绩分布,得出一个阶段的学生总体是否进步,然后寻找原因,得出改进办法。分析一年 经济的发展,预测来年的收入。找出影响发展的主要因素,寻求改进的方法等等。
小概率事件即发生概率很小的事件(p≤),在统计学中有着重要的应用,这样的事件理论上发生的可能性则几乎为零。如买彩票中大奖,就是典型的小概率事件,也许每一期均会有大奖开出(可能性很小),但对于每一个彩民来说,他买一注中大奖的可能性(小概率事件在一次试验中就发生的概率几乎没有。其实,这就是小概率事件在统计学上应用的重要理论依据——小概率原理。)即小概率事件在一次试验中发生的可能性很小,如果真的发生了,根据统计学可怀疑其真实性。
如某接待站在一天内共接待5人单独来访,结果这5人全在周一到访,由此能否推断接待站有规定的接待日?假定没有规定的接待日,一个来访者在五天中任何一天来访都是等可能的用Am(m=1,2,3,4,5,)表示“一周接待了m个人,全都是周一来访”事件,Am的概率如下表示:
事件 A1概率 事件 A2概率
事件 A3概率 事件 A4概率
事件 A5概率
5个人都在周一来访的概率为,大约万分之三。现在概率很小的事件在一次试验中发生了,于是怀疑假定的正确性,从而推断接待站有规定的接待日。
公元1814年,拉普拉斯在他的新作中,记载了一个有趣的统计,世界上男婴与女婴的出生比值是22∶21,即在出生的婴儿中,男婴占,女婴占,可奇怪的是1745-1784年四十年间统计巴黎男婴的出生率时,却得到另一个比是25∶24,男婴占,与前者相差,对于这千分之一点八的微小差异,进行调查研究,发现巴黎人有“重女轻男”的现象,有抛弃男婴的陋习,以至于歪曲了出生率,经过修正出生比依然是22∶21。统计学依据小概率原理作出结论的正确性很高,但也存在犯错误的风险(较低)。
小概率原理在统计上有着非常重要的应用。如假设检验结论的判断,假设检验是用样本信息推测总体的一种统计推断方法,由于抽样误差的存在,样本信息和总体特征间可能不尽相同,所以假设检验实际上就是判断待比较各方的差别是不是由抽样误差造成的。假设检验中p值的大小反映的就是差别由抽样误差造成的概率。在假设检验中就是通过比较p值与检验水准a(通常设为)的大小关系,从而做出差别有无统计学意义。
如果p值小于a统计学则认为差别由抽样误差造成的概率很低,那么根据小概率原理认为,小概率事件在一次抽样中就发生的可能性几乎为零,所以判定差别可能是由于比较各方在本质上的不同导致的。否则认为差别是由抽样误差造成的。在这里检验水准是在假设检验前认为设定的,是研究者能够承受的本次假设检验放弃真错误的概率,也可以理解为是研究者设立的小概率事件的概率。而p值则是通过计算,即在检验假设成立的情况下,差别是由抽样误差造成的概率。
统计在现代化 管理和 社会生活中的地位日益重要,随着社会经济和科学技术的发展统计在现代化国家管理和企业管理中的地位越来越重要,人们的日常生活都离不开统计,统计的影响是这样巨大,故与之密切相关的概率的作用也越来越重要。
浅谈统计学基础教学方法与学生应用能力的培养
摘要:统计学基础知识是一门研究数据的技术性学科,具有综合性,抽象性及应用面广等特点,通过该课程的教学能培养学生运用统计工具,系统的分析问题和解决问题的能力。在中职教学中需结合本学科的特点,不断改进教学方法,提高学生综合应用统计知识的能力。
关键词:统计学教学方法设计能力培养
统计学基础知识是一门研究数据的技术性学科,学科内容中的调查研究和分析处理问题的方法,不仅应用于各项工作中,也用于其他学科研究过程中的数据搜集、整理、分析并得出结论。故统计学具有综合性,抽象性,应用面广等特点,通过该课程的教学能培养学生运用统计工具,系统的分析问题和解决问题的能力。现结合本学科的特点探讨其教学方法和学生应用能力的培养。
一、统计学基础课程教学的特点
统计学基础也是社会经济统计学原理,其学科内容的特点:一是基本概念多,理论讲授上较抽象;二是指标类别多,初学时严格划清各种指标内涵难;三是调查分析方法多,正确理解和选择恰当的调查方法难;四是正确的调查方式、方法指标体系的设置,统计范围的界定与是否得出反映事物的正确结论直接相关;五是科学设置调查事物的指标体系又与弄清反映该事物的客观内在本质的相关指标直接相关。因此,对年龄小,分析能力差的中职学生教学对象来讲,即便从概念上掌握了统计学的原理,如果不结合实际的统计案例资料和采用恰当的教学方法,就很难达到正确应用统计知识解决现实社会经济中问题的目的,甚至会因为错误使用方法,得出对事物评判的错误结论。
二、结合本学科知识的特点采用适当的教学方法,增强应用能力的培养
在教学中,首先通过对教材内容体系的全面分析和教学对象知识结构的分析,以及学生对统计学知识学习的兴趣、理解的深度和掌握应用情况的总结,在教学中的不同环节恰当地实施不同的教学方法。
1、通过学科内容体系导入与工作任务联系,提升学生学习兴趣
在讲授本学科内容时,首先给学生介绍统计学基础教材内容的基本框架:统计学的涵义、研究对象、性质、职能和研究的基本方法。其次是介绍学科知识体系:统计学中的基本概念,统计资料调查整理的方式方法,统计数据的显示与提供,以及提供的统计数字资料运用多种指标法进行分析(总量指标法--反映事物的规模状况,平均指标法--反映事物的集中趋势及一般规律,相对指标法--反映事物的纵向横向比较和事物之间的联系,标准差法--反映事物中总体单位标志值之间的离散趋势和程度,分析事物之间的差异。统计指数法--反映事物中各种直接因素的影响。
时间数列法--反映事物在时间段上的发展变化趋势。抽样调查法--统计专门调查方法中最科学的方法。相关回归分析法--分析事物中的因果关系。)通过内容体系的简单讲解导入,让学生在学习具体理论知识前就对该学科有一个总体感性认识,产生兴趣。带着要通过掌握统计知识去解决实际问题的意识和目的去学习。
2、让学生的学习从理性认识过渡到感性认识,增强应用能力
我在教学中介绍统计学的基本概念和统计调查方法内容时,除对每个知识点进行举例说明外,一部分知识讲完后,给出几个典型的统计调查方案让学生弄清在这些调查方案中所涉及的统计总体、总体范围的界定、总体单位、标志、指标以及采用的哪种调查方式等。这不仅让学生把抽象的统计学概念知识从理性认识过渡到了感性认识,而且通过这些案例还进一步让学生明白了调查方式的选用必须要根据调查对象和要解决的问题适当选取,而不是什么调查目的,什么事物都可以用任何一种调查方式。只有正确选用统计方式、方法去调查分析客观事物才能得出正确的结论,才能具备正确利用统计知识去分析解决问题的能力。
3、综合指标应用与典型资料结合法,提高学生的应用能力在讲授综合指标法时,对每一种指标的理解都是
分别举例说明让学生理解该指标的含义和作用。为了让学生能正确理解和区分每一种指标的作用,在所有指标介绍完后,我选用了国民经济年度统计公报资料作为案例,让学生从统计公报资料中找出学习过的每一种综合指标,如:2007年全国GDP总值,人口数等是总量指标。本年度GDP完成百分比是计划完成相对指标,本年度GDP比上年度增长百分比是动态相对指标。人均GDP是强度相对指标。
GDP构成比例是结构相对指标。五年中平均每年增长的百分比是后面要学习的平均发展速度和平均增长速度的应用。通过这样的案例,学生不仅对各种综合指标法的应用有了正确的理解,而且把各种指标的理解认识变成了应用能力,同时还对后面学习动态数列知识奠定了基础。在教学中很好地起到了巩固理解知识和预习下一教学环节内容的潜在作用。还起到了掌握知识综合性的效果。通过这样一个案例,学生进一步明确,研究一个总体的问题时,可以对问题的不同方面运用多种指标进行分析,弄清事物之间客观存在的关联,这些都必须用一定的统计数据来说话。因此进一步强调了学生学习统计知识的必要性,也让他们认识到统计学知识的科学性和实用性。
4、新旧知识在现实案例中的综合运用,提升学生应用能力
在讲授统计指数的内容时,传授给学生统计指数编制的基本方法的原理,教材中举例的商品价格、商品量、以及职工工资水平指数的编制都仅仅是一种计算基本方法的介绍。要培养学生应用能力还必须结合实际统计指数编制的案例进行讲解,让学生能够将理论知识及其计算方法应用到实际工作中去,所以我特意在理论知识和计算方法讲完后,介绍实际工作中零售物价指数的编制。这个经济指数也是民众普遍关注的问题,与人们生活水平息息相关。
告诉学生,物价指数的编制运用了抽样调查的知识,实际工作中不可能对每一种商品都采价调查,而是分大类商品,在商场和集贸市场分别采价。例如集贸市场的蔬菜价格每周至少要采集三次,每次要采集成交价的三人次,进入零售商品物价指数编制的价格实际上是一个多次简单平均的价格,而每天某种商品的三个价格要简单平均,每周三次的平均价格再简单平均。商场的商品价格如较稳定可用期初和期末的平均。通过这样一个案例,既给学生传授了新知识,又复习巩固了平均指标计算方法的具体应用,不仅日常生活中用,而且在经济研究中应用非常广泛。进一步告诉学生加权平均法和调和平均法在编制物价指数和其他社会经济现象指数中的应用。
5、典型调查案例教学法,培养学生综合应用统计知识,分析解决问题的能力
教学中我把学生应用统计知识,分析问题能力的培养放在抽样技术的教学内容中,抽样技术的基本理论也是抽象的。如,抽样误差,抽样平均误差,抽样的组织方式。针对研究对象的特点,都必须具体问题具体分析,而抽样误差的计算既涉及到平均指标的计算又涉及到标准差的计算,新旧知识的交替如何培养学生应用新旧知识计算、分析问题,解决问题是教学的难点。
为了突破这个难点,我在教学中利用了一个草席质量抽样调查的案例,这个案例体现了从制定调查方案中的调查方式的确定,采用主要标志划类,简单随机抽样原则,到调查实施的步骤:草席宽度分类,登记原验级等级,编顺序号,确定抽样总体,计算全级总体标准差,决定抽样数目,设计计算表格,决定样本号,现场调查中的统一验级标准。
验级过程:由5人分别验级,级数的最后确定采用众数办法,5人验级中的3人验级标准为准。以上这些都具有前面介绍的抽样调查方式的代表性,而又用到了平均指标和众数的方法。同时,在计算草席平均等级时,还用到了品质标志值平均指标的计算,即将等级品质标志值过渡成数量标志来计算该批不同尺寸草席的平均等级,再计算抽样指标与原验级指标之间的误差。
这样一个复杂的抽样调查过程和指标的计算结果,更清晰的告诉学生要说明和解决的问题:由于收购草席时,验级人员在判断标准上的误差带来了草席等级误差与价格的差异。而由于误差的存在,根据此抽样调查结果计算出的整个库存草席的总价值与实际价值的差异巨大。对导致这样的结果,进一步结合政策市场以及人为等多种因素进行分析,查找了原因并提出了切实可行的解决方案,促使了草席的收购价实相符。
通过以上几方面的教学方法设计,能让学生对统计学有更全面的认识,对学科基础内容有一个总体框架性把握,让那些学生在学习时感觉模糊的概念和繁杂的理论通过这几个教学环节的反复巩固和练习也逐步变得清晰,并大大提高了其综合应用统计知识的能力。
一、高中英语课堂教学过程中存在的问题在高中英语课堂教学过程中,受到各方面因素的影响,存在很多的问题,甚至陷入了困境。(一)教学模式单一教与学是对立统一的关系,在
[1]李晓康,郭三刚,. 概率论与数理统计课程的改革与实践[J]. 价值工程,2011,(7). [2]谷武扬,. 关于概率论与数理统计教材中数学期望的
硕士毕业论文的要求相当于本科生。与本科毕业论文相比,硕士毕业论文的内容和理论观点更加丰富,硕士论文主要来自实践,可以显著表达硕士研究的独特性,其研究目的与研究背
一、论文查重率太高怎么办? 1.外文文献翻译:即查阅论文涉及领域的外文文献,特别是一些高水平的期刊文献,将理论翻译成中文,然后放入自己的论文中。 2.改变措辞:
论文降重的前提是查重,学校用的什么查重网站最好使用什么查重网站查,如果前期觉得其他系统价格贵的话可以试试万方,安全可靠,尽量不要去免费的网站,漏洞很多,一定要保