sunshieeos
简介 一类与光合作用(photosynthesis)有关的最重要的色素。光合作用是通过合成一些有机化合物将光能转变为化学能的过程。叶绿素实际上见于所有能营光合作用的生物体,包括绿色植物、原核的蓝绿藻(蓝菌)和真核的藻类。叶绿素从光中吸收能量,然后能量被用来将二氧化碳转变为碳水化合物。 叶绿素有几个不同的类型∶叶绿素a和b是主要的类型,见于高等植物及绿藻;叶绿素c和d见于各种藻类,常与叶绿素a并存;叶绿素c罕见,见於某些金藻;细菌叶绿素见于某些细菌。在绿色植物中,叶绿素见于称为叶绿体的细胞器内的膜状盘形单位(类囊体)。叶绿素分子包含一个中央镁原子,外围一个含氮结构,称为卟啉环;一个很长的碳-氢侧链(称为叶绿醇链)连接於卟啉环上。叶绿素种类的不同是某些侧基的微小变化造成。叶绿素在结构上与血红素极为相似,血红素是见于哺乳动物和其他脊椎动物红血球内的色素,用以携带氧气。 叶绿素是二氢卟酚(chlorin)色素,结构上和卟啉(porphyrin)色素例如血红素类似。在二氢卟酚环的中央有一个镁原子。叶绿素有多个侧链,通常包括一个长的植基(phytyl chain)。以下是自然界中可以找到的几种叶绿素:叶绿素a 叶绿素b 叶绿素c1 叶绿素c2 叶绿素d分子式 C55H72O5N4Mg C55H70O6N4Mg C35H30O5N4Mg C35H28O5N4Mg C54H70O6N4MgC3 团 -CH=CH2 -CH=CH2 -CH=CH2 -CH=CH2 -CHOC7 团 -CH3 -CHO -CH3 -CH3 -CH3C8 团 -CH2CH3 -CH2CH3 -CH2CH3 -CH=CH2 -CH2CH3C17 团 -CH2CH2COO-Phytyl -CH2CH2COO-Phytyl -CH=CHCOOH -CH=CHCOOH -CH2CH2COO-PhytylC17-C18 键 单键 单键 双键 双键 单键存在于 普遍存在 一般于陆生植物 多种藻类 多种藻类 一些红藻作用 1 天线作用 2 反应中心 天线作用 分子立体模型绿色植物是利用空气中的二氧化碳、阳光、泥土中的水份及矿物质来为自己制造食物,整个过程名为“光合作用”,而所需的阳光则被叶子内的绿色元素吸收,这一种绿色的有机化合物就是叶绿素[1]。 高等植物叶绿体中的叶绿素主要有叶绿素a 和叶绿素b 两种(分子式: C40H70O5N4Mg)属于合成天然低分子有机化合物。叶绿素不属于芳香族化合物。它们不溶于水,而溶于有机溶剂,如乙醇、丙酮、乙醚、氯仿等。在颜色上,叶绿素a 呈蓝绿色,而叶绿素b 呈黄绿色。在右图所示的叶绿素的结构图中,可以看出,此分子含有3种类型的双键,即碳碳双键,碳氧双键和碳氮双键。按化学性质来说,叶绿素是叶绿酸的酯,能发生皂化反应。叶绿酸是双羧酸,其中一个羧基被甲醇所酯化,另一个被叶醇所酯化。 叶绿素分子含有一个卟啉环的“头部”和一个叶绿醇的“尾巴”。镁原子居于卟啉环的中央,偏向于带正电荷,与其相联的氮原子则偏向于带负电荷,因而卟啉具有极性,是亲水的,可以与蛋白质结合。叶醇是由四个异戊二烯单位组成的双萜,是一个亲脂的脂肪链,它决定了叶绿素的脂溶性。叶绿素不参与氢的传递或氢的氧化还原,而仅以电子传递(即电子得失引起的氧化还原)及共轭传递(直接能量传递)的方式参与能量的传递。 卟啉环中的镁原子可被H+、Cu2+、Zn2+所置换。用酸处理叶片,H+易进入叶绿体,置换镁原子形成去镁叶绿素,使叶片呈褐色。去镁叶绿素易再与铜离子结合,形成铜代叶绿素,颜色比原来更稳定。人们常根据这一原理用醋酸铜处理来保存绿色植物标本。 叶绿素共有a、b、c和d4种。凡进行光合作用时释放氧气的植物均含有叶绿素a;叶绿素b存在于高等植物、绿藻和眼虫藻中;叶绿素c存在于硅藻、鞭毛藻和褐藻中,叶绿素d存在于红藻。 叶绿素a的分子结构由4个吡咯环通过4个甲烯基(=CH—)连接形成环状结构,称为卟啉(环上有侧链)。卟啉环中央结合着1个镁原子,并有一环戊酮(Ⅴ),在环Ⅳ上的丙酸被叶绿醇(C20H39OH)酯化、皂化后形成钾盐具水溶性。在酸性环境中,卟啉环中的镁可被H取代,称为去镁叶绿素,呈褐色,当用铜或锌取代H,其颜色又变为绿色,此种色素稳定,在光下不退色,也不为酸所破坏,浸制植物标本的保存,就是利用此特性。在光合作用中,绝大部分叶绿素的作用是吸收及传递光能,仅极少数叶绿素a分子起转换光能的作用。它们在活体中大概都是与蛋白质结合在一起,存在于类囊体膜上。 叶绿醇是亲脂的脂肪族链,由于它的存在而决定了叶绿素分子的脂溶性,使之溶于丙酮、酒精、乙醚等有机溶剂中。主要吸收红光及蓝紫光(在640-660nm的红光部分和430-450nm的蓝紫光强的吸收峰),因为叶绿素基本上不吸收绿光使绿光透过而显绿色,由于在结构上的差别,叶绿素a呈蓝绿色,b呈黄绿色。在光下易被氧化而退色。叶绿素是双羧酸的酯,与碱发生皂化反应。
哈毛小子
2.2镉对叶绿体的影响2.2.1镉对叶绿体超微结构的影响镉胁迫下植物出现毒性症状是由于叶绿素降解、叶绿体功能失调而不能进行光合作用所致。叶绿体是植物进行光合作用的主要细胞器,镉会损伤其超微结构。镉对叶绿体的毒害因植物发育阶段而有不同,研究发现,土壤加镉处理并未对幼叶叶绿体的超微结构发生任何可见影响,但成熟叶的叶绿体膜系统受到了很大伤害,在高镉条件下,叶绿体大多呈球形,膜系统严重受损,出现质壁分离和坏死。有研究表明,类囊体结构的完整性和有序性对于叶绿体在光合作用中进行正常而有效的光能转换是非常必要的。可见叶绿体结构上的破坏是镉离子对植物毒害的机制之一。2.2.2镉对光合色素的影响叶绿素含量是影响光合作用的物质基础。在一定范围内,叶绿素含量与光合作用呈正相关关系,叶绿素含量越高,光合作用越强;但当叶绿素含量超过一定限度后,对光合作用便无影响。镉能取代叶绿素分子中的镁离子并干扰有关叶绿素合成酶的活性,使叶绿素合成受阻,同时增加了叶绿素分解酶的活性,使叶绿素分解。研究发现,镉酸盐在玉米(ze。mays)中会减少叶绿素的生物合成,在春小麦和燕麦中也发现类似结果。此外,亚镉酸盐也能使叶绿素合成受阻。宋东杰等研究了经不同浓度镉离子溶液处理的药材,发现其冬芽叶色变黄失绿,叶绿素含量随镉离子浓度的增高而逐渐减少。2.3镉对光合速率(强度)影响已经有大量研究表明,叶绿体超微结构破坏和光合色素(尤其是叶绿素)减少是引起植物光合作用强度降低的主要因素之一。由于叶绿素具有接受和转换能量的作用,所以,在植株中凡是绿色的、具有叶绿素的部位都进行光合作用。在一定范围内,叶绿素含量越多,光合作用越强。随着叶片衰老,叶绿素含量下降,以及叶绿体内部结构的解体,光合速率下降。如前所述,镉破坏叶绿体超微结构,减少光合色素含量,从而降低了植物的光合速率。同一植物不同生育时期,镉对光合作用的影响不一。植物根系吸收镉进入体内,引起植物体内营养元素的不平衡,造成代谢失调,抑制植物生长,从而减少叶的同化面积,缩短叶的寿命,造成光合速率下降;镉引起气孔开度减少甚至关闭,CO2能进入叶片,叶片内淀粉的水解作用加强,光合产物转运又较缓慢,结果造成糖分累积,呼吸消耗增加等,引起光合速率降低。2.4镉对光合作用过程的影响研究光合作用过程主要是研究光反应和暗反应,即研究光反应中光系统H(PSH)和光系统I(PSI)之间的电子传递和光合磷酸化及暗反应中碳同化酶系的活性。一方面镉使PSH活性和光合磷酸化受阻,影响ATP的形成,另一方面镉抑制核酮糖一1,5-二磷酸(RuBP)梭化酶的活性,RuBP梭化酶作为植物体内光合碳循环中固定C氏的关键酶,该酶的活性变化直接影响碳素的固定,进而影响体内的代谢过程。2.4.1镉对光反应过程的影响在农业中镉化物被广泛用作除草剂,能抑制光合作用光反应中PSll的电子传递!’“”’02]。由于光合磷酸化与电子传递相偶联,所以一些含镉除草剂通过抑制从P引I上的醒(Q)向质体醒(PQ)的电子传递,或竞争性地占据Psll中位于QB(D!多肤上的质体醒)的结合位点来阻断从Q八(D:多肤上的质体醒)到Q。的电子传递【83]。除草剂的杀草原理较复杂,至今尚不完全清楚。但一般说来,除草剂主要是通过干扰和破坏杂草的生理生化过程,使其失调,从而抑制杂草生长、发育,导致其死亡。由于杂草与作物之间在形态、结构、生理和生长时间上,存在许多差异,除草剂正是充分利用这些差异,通过形态选择、根系分布选择、发芽时间选择和生理生化选择等,以取得理想的除草效果!’“,]。就影响光合作用的除草剂而言,它们主要通过选择性抑制杂草光合电子传递链、分流光合电子传递链的电子、抑制光合磷酸化、抑制色素的合成和抑制水光解来抑制光合作用{’。“}。希尔反应(Hill:eaction)是光合作用中最独特和最本质的部分,叶绿体在光作用下进行水分解并释放氧气!’0,l。Hill反应活力是反映廿十片光合强度高低的一个重要指标。镉浓度在1omolL’’时,对蓝藻细胞光合放氧速率有促进作用,然后随镉浓度的增加其光合放氧速率则下降[’061。对菠菜的研究结果表明,Hg、As使Hill反应活性受到抑制。H3Aso;使燕麦叶片 Ps11最大光化学效率(FvzF。)降低[9,]。stoeva等I”]对玉昆明理}人学硕一t:,学位论文米的研究也得到类似结果。另外,大多数重金属离子对Psll的抑制作用远较对Psl显著,PSll是对重金属离子作用最敏感的部位I’。7一’081。目前已有很多研究表明,在重金属污染下,在其他可见损伤症状表现出来之前,光系统(特别是PSH)的一些变化(如量子产额等)便会敏感而快速地发生!’。9一川}。作为磷的同族元素,化学性质类似,镉能经磷转运系统通过质膜,一旦进入细胞质,便能与磷发生竞争反应,例如,它能取代ATP(光反应中最早的相对稳定的一种产物)的磷而形成不稳定的ADP一As,从而对细胞能量流动产生干扰!”’一”’j。因此,镉的毒性主要源于对磷代谢的干扰I”“1。研究表明,增加土壤中的镉量可减少卡诺拉(Canola)幼苗对磷的吸收[”’}。镉干扰作物对磷的代谢途径,镉毒害可使作物对磷吸收的通道关闭[63}。然而,磷、钾等元素参与糖类代谢,缺乏时便影响糖类的转变和运输,这样也就间接抑制了光合作用;同时,磷也参与光合作用中间产物的转变和能量传递,所以对光合作用的影响很大!00]。植物生长发育缺乏所必需的能源,严重毒害下可导致细胞死亡!”6}。镉可通过磷的通道进入植物体,因此生长在镉污染土壤的植物会大量吸收镉进入体Nl6,•,,6-l!7]。4.2镉对暗反应过程的影响暗反应全过程分为梭化、还原和再生三个阶段。在碳同化的梭化阶段,核酮糖一1,5一二磷酸(RuBP)在核酮糖一1,5一二磷酸梭化酶/加氧酶(Rubisco)催化下与COZ结合。Rubisco是光合碳同化的关键酶,也被称限速酶。就目前所掌握的文献看,关于镉对暗反应中酶系活性影响的研究较少。与其他重金属(如镉、Pb和Cu等)相比,人们对镉污染下植物的生理反应研究还不够充分[”8!。但是,有研究表明镉能干扰某些必需元素(如氮、磷等)的代谢,而这些必需元素又与光反应或暗反应直接相关,从而镉也就间接干扰了光合作用过程。例如,氮对光合影响最为显著,在一定范围内,叶的含氮量、叶绿素含量、Rubisco含量分别与光合速率成正相关。叶片中含氮量的80%在叶绿体中,施氮既能增加叶绿素含量,加速光反应,又能增加光合酶的含量与活性,加快暗反应。从氮素营养好的叶片中提取出来的Rubisco不仅量多,而且活性高Igvl。然而,镉毒害改变了烤烟(Nicotian。tabacum)的氮代谢,造成生育前期氮同化能力的降低,表现出硝酸还原酶(NR)活性下降、总氮和蛋白质含量低于对照!””】。此外,镉污染的土壤上,作物常出现缺氮症状[9’I。因此可推知,镉对植物氮代谢的影响可能会影响Rubisco的含量,进而干扰暗反应的进程。
刘彦热茶
叶绿素,在光合作用的光吸收中起核心作用。是植物进行光合作用的主要色素,是一类含脂的色素家族,位于类囊体膜。
叶绿素为镁卟啉化合物,包括叶绿素a、b、c、d、f以及原叶绿素和细菌叶绿素等。叶绿素不很稳定,光、酸、碱、氧、氧化剂等都会使其分解。酸性条件下,叶绿素分子很容易失去卟啉环中的镁成为去镁叶绿素。叶绿素有造血、提供维生素、解毒、抗病等多种用途。
扩展资料:
叶绿素吸收光谱的最强区域有两个:一个是在波长为640nm-660nm的红光部分,另一个在波长为430nm-450nm的蓝紫光部分。对其他光吸收较少,其中对绿光吸收最少,由于叶绿素吸收绿光最少,所以叶绿素的溶液呈绿色。
叶绿素的丙酮提取液在透射光下是翠绿色的,而在反射光下是棕红色的。 叶绿素溶液的荧光可达吸收光的10%左右。而鲜叶的荧光程度较低,指占其吸收光的0.1%-1%左右。
荧光效应在植物生理学中有广泛的应用。用这个效应可以研究植物的抗逆生理。因为在逆境下,植物的叶绿素会发生变换,研究其荧光,可以作为植物受逆境胁迫程度的指标。另外,还有一个磷光效应。就是当荧光出现后,立即中断光源,用灵敏的光学仪器还可在短时间内看到微弱红光。
参考资料来源:百度百科-叶绿素
参考资料来源:百度百科-植物 (有叶绿素和细胞壁能够进行自养的真核生物)
小能喵尉哥
[编辑本段]什么是全球变暖 全球变暖指的是在一段时间中,地球的大气和海洋温度上升的现象,主要是指人为因素造成的温度上升。原因很可能是由于温室气体排放过多造成。 全球气候变暖是一种“自然现象”。由于人们焚烧化石矿物以生成能量或砍伐森林并将其焚烧时产生的二氧化碳等多种温室气体,由于这些温室气体对来自太阳辐射的可见光具有高度的透过性,而对地球反射出来的长波辐射具有高度的吸收性,也就是常说的“温室效应”,导致全球气候变暖。近100多年来,全球平均气温经历了冷-暖-冷-暖两次波动,总的看为上升趋势。进入八十年代后,全球气温明显上升。全球变暖的后果,会使全球降水量重新分配,冰川和冻土消融,海平面上升等,既危害自然生态系统的平衡,更威胁人类的食物供应和居住环境。[编辑本段]全球气候变暖的背景 全球变暖是指全球气温升高。近100多年来,全球平均气温经历了冷-暖-冷-暖两次波动,总的看为上升趋势。进入八十年代后,全球气温明显上升。 1981~1990年全球平均气温比100年前上升了0.48℃。导致全球变暖的主要原因是人类在近一个世纪以来大量使用矿物燃料(如煤、石油等),排放出大量的CO2等多种温室气体。由于这些温室气体对来自太阳辐射的可见光具有高度的透过性,而对地球反射出来的长波辐射具有高度的吸收性,也就是常说的“温室效应”,导致全球气候变暖。 全球变暖的后果,会使全球降水量重新分配,冰川和冻土消融,海平面上升等,既危害自然生态系统的平衡,更威胁人类的食物供应和居住环境。 出现全球变暖趋势的具体原因是,人们焚烧化石矿物以生成能量或砍伐森林并将其焚烧时产生的二氧化碳进入了地球的大气层。政府间气候变化问题小组根据气候模型预测,到2100年为止,全球气温估计将上升大约1.4-5.8摄氏度(2.5-10.4华氏度)。根据这一预测,全球气温将出现过去10,000年中从未有过的巨大变化,从而给全球环境带来潜在的重大影响。 为了阻止全球变暖趋势,1992年联合国专门制订了《联合国气候变化框架公约》,该公约于同年在巴西城市里约热内卢签署生效。依据该公约,发达国家同意在2000年之前将他们释放到大气层的二氧化碳及其它“温室气体”的排放量降至1990年时的水平。另外,这些每年的二氧化碳合计排放量占到全球二氧化碳总排放量60%的国家还同意将相关技术和信息转让给发展中国家。发达国家转让给发展中国家的这些技术和信息有助于后者积极应对气候变化带来的各种挑战。截止2004年5月,已有189个国家正式批准了上述公约。[编辑本段]全球变暖的历史与预测 全球变暖是真实的,而且正在进行! 主流科学界一致对全球变暖是越来越清楚了,每天在改变我们的气候都是真实的,他们也正在进行中。在20世纪末年初以来,表面平均温度的地球增加了约1.1f ( 0.6摄氏度) 。在过去的40年中,气温上升约0.5f ( 0.2-0.3摄氏度) 。在过去400-600年,全球变暖,在20世纪是更超过历史上任何一个时间, 7分之10的年,在20世纪发生在20世纪90年代,由于其中一个最强劲的下午1998是最热的一年,因为可靠的温度测量开始的。 此外,变化,在自然环境支持的事实,即地球正在变暖; 山区giaciers也在逐渐消退; 在过去四十年里,北极冰厚度已经下跌了大约40 % ; 全球海平面上升了约快三倍超过了过去的100年相比在以前的3000年里 有越来越多的研究显示,植物和动物改变其范围和行为回应气候。 根据仪器记录,相对于1860年至1900年期间,全球陆地与海洋温度上升了摄氏0.75度。自1979年,陆地温度上升速度比海洋温度快一倍(陆地温度上升了摄氏0.25度,而海洋温度上升了摄氏0.13度)。根据卫星温度探测,对流层的温度每十年上升摄氏0.12度至0.22度。在1850年前的一两千年,虽然曾经出现中世纪温暖时期与小冰河时期,但是大众相信全球温度是相对稳定的。 根据美国国家航空航天局戈达德太空研究所的研究报告估计,自1800年代有测量仪器广泛地应用开始,2005年是最温暖的年份,比1998年的记录高了摄氏百分之几度。 世界气象组织和英国气候研究单位也有类似的估计,曾经预计2005年是仅次于1998年第二温暖的年份。 在人类近代历史才有一些温度记录。这些记录都来自不同的地方,精确度和可靠性都不尽相同。在1860年才有类似全球温度仪器记录,相信当年的记录很少受到城市热岛效应的影响。从最近的千禧年内的多方记录所展示的长远展望,在过去1000年的温度记录中可以看到有关的讨论及其中的差异。最近50年的气候转变的过程是十分清晰,全赖详细的温度记录。到了1979年,人类更开始利用卫星温度测量来量度对流层的温度。 在2000年后,各地的高温记录经常被打破。譬如:2003年8月11日,瑞士格罗诺镇录得摄氏41.5度,破139年来的记录。同年,8月10日,英国伦敦的温度达到摄氏38.1,破了1990年的记录。同期,巴黎南部晚上测得最低温度为摄氏25.5度,破了1873年以来的记录。8月7日夜间,德国也打破了百年最高气温记录。在2003年夏天,台北、上海、杭州、武汉、福州都破了当地高温记录,而中国浙江省更快速地屡破高温记录,67个气象站中40个都刷新记录。2004年7月,广州的罕见高温打破了五十三年来的记录。2005年7月,美国有两百个城市都创下历史性高温记录。2006年8月16日,重庆最高气温高达43度。台湾宜兰在2006年7月8日温度高达38.8度,破了1997年的记录。2006年11月11日是香港整个十一月最热的一日,最高气温高达29.2度,比1961年至1990年的平均最高温26.1度还要高。 据新华社电美国科学家研究发现,古代农业活动曾使世界避免进入新冰川期。这说明,人类活动引起全球气候变暖可能持续了数千年。研究人员说,砍倒大树并开垦第一片田地的史前农民使大气中甲烷和CO 2等温室气体含量发生了很大变化,全球气温因此逐渐回升。 美国弗吉尼亚大学教授拉迪曼说:“要不是早期农业带来的温室气体,目前地球气温很可能还是冰川时期的气温。”拉迪曼承认,研究结果非常容易引起争议。 美国国家大气研究中心17日说,科学家通过两项最新研究预测,即使现在全世界温室气体的排放量稳定在2000年的水平,本世纪全球变暖和海平面上升的趋势已经不可逆转。 国家大气研究中心的科学家在18日出版的《科学》杂志上连续发表两篇论文,从不同角度预测了全球气候变化的趋势。他们的成果将由联合国下属的政府间气候变化专家委员会评估,收录到2007年公布的下一份全球气候变化报告中。 在第一篇论文中,国家大气研究中心的魏格雷提出了一个较简单的数学模型来理解全球气候变化。他认为,由于海洋存在“热惯性”,对温室气体等外界影响的反应有所滞后,本世纪全球变暖的趋势只不过是以前排放温室气体的后果。 据魏格雷预测,到2400年,已存在于大气中的温室气体成分,将至少使全球平均气温升高1摄氏度;不断新排放的温室气体,又将导致全球平均气温额外升高2至6摄氏度。这两个因素还会分别引起海平面每世纪上升10厘米和25厘米。 他在论文中说,要遏制气候变暖的趋势,现在就必须将全球温室气体排放控制在极其低的水平,即使这样海平面上升的趋势恐怕也难以避免,每世纪10厘米的上升速度可能是最乐观的预测。 由杰拉尔德·梅尔等人发表的第二篇论文则预测,由于“热惯性”的存在,即使本世纪中人类不向大气排放任何温室气体,到2100年全球平均气温也将至少升高0.5摄氏度,海平面将上升11厘米以上,其中海平面上升的速度比科学家早先的预测值高了一倍多。梅尔对此解释说,这是因为以前的预测没有考虑到冰川融化等的影响。 梅尔的研究小组用两套数学模型,借助超级计算机模拟了全球温室气体排放量分别为低、中、高时的气候和海平面变化情况。[编辑本段]全球变暖的条件 地球气候变暖和人类大量排放温室气体导致温室效应有关。但日本和丹麦科研人员近日指出,温室气体增加并非导致气候变暖的惟一原因,太阳活动变化在其中也起到了推动作用。 据《日本经济新闻》报道,日本横滨国立大学环境信息研究院的伊藤公纪教授制作了一张图表。从图上看,过去200年间地球平均气温和太阳磁场强度的变化曲线基本吻合。伊藤公纪由此推断,太阳活动对气候变暖也有影响,仅用温室气体增加解释气候变暖可能不够全面。 太阳活动对地球气温的影响已被专家们关注了很长时间。一般来说,太阳黑子多的时候,太阳活动剧烈。比如史料曾记载,公元17世纪时太阳黑子很少出现,当时的地球气候也相对寒冷。但地面获得的探测信息也显示,太阳活动强弱变化引起的太阳辐射能量变化幅度仅为0.1%,如此微小的变化似乎不足以对气候造成太大影响。 然而,最近国际空间科学界出现了一种假说,认为太阳活动的变化会改变地球上空的云量,“放大”太阳对地球的影响,从而左右气候变化。提出这种假说的丹麦科学家推测,射向地球的宇宙射线可较稳定地使部分大气离子化,使云容易生成,从而吸收太阳的大量辐射,降低地球温度。但是,太阳活动高峰时释放出的高速带电粒子流,能干扰宇宙射线射向地球,使云不易形成,进而导致地球温度升高。目前,丹麦科研人员正在研究与云形成有关的各种因素,以论证上述假说。 也有日本专家提出,虽然太阳辐射能量的变化幅度只有0.1%,但他们发现这种能量变化能使地球大气对于太阳紫外线的吸收量变化幅度达到百分之几,这种吸收量的增加会使大气臭氧层温度升高。日本气象研究所第二研究部负责人小寺邦彦表示,臭氧层温度的变化会波及对流层,从而对寒流和季风造成影响,但目前尚不清楚上述机制能对地球气候变暖产生多大影响。为了继续研究这个课题,小寺邦彦等人组成的国际研究小组已于去年开始工作。[编辑本段]全球变暖的原因 全球变暖的原因很多,概括以后有以下几点: 1.人口剧增因素 近年来人口的剧增是导致全球变暖的主要因素之一。同时,这也严重地危肋着自然生态环境间的平衡。这样多的人口,每年仅自身排放的二氧化碳就将是一惊人的数字,其结果就将直接导制大气中二氧化碳的含量不断地增加,这样形成的二氧化碳“温室效应”将直接影响着地球表面气候变化。 2.大气环境污染因素 目前,环境污染的日趋严重已构成一全球性重大问题,同时也是导致全球变暖的主要因素之一。现在,关于全球气候变化的研究已经明确指出了自上个世纪末起地球表面的温度就已经开始上升。 3.海洋生态环境恶化因素 目前,海平面的变化是呈不断地上升趋势,根据有关专家的预测到下个世纪中叶,海平面可能升高50cm。如不采取及对措施,将直接导致淡水资源的破坏和污染等不良后果。另外,陆地活动场所产生的大量有毒性化学废料和固体废物等不断地排入海洋;发生在海水中的重大泄(漏)油事件等以及由人类活动而引发的沿海地区生态环境的破坏等都是导致海水生态环境遭破坏的主要因素。 4.土地遭侵蚀、沙化等破坏因素 5.森林资源锐减因素 在世界范围内,由于受自然或人为的因素而造成森林面积正在大幅度地锐减。 6.酸雨危害因素 酸雨给生态环境所带来的影响已越来越受到全世界的关注。酸雨能毁坏森林,酸化湖泊,危及生物等。目前,世界上酸雨多集中在欧洲和北美洲,多数酸雨发生在发达国家,一些发展中国家,酸雨也在迅速发生、发展。 7.物种加速绝灭因素 地球上的生物是人类的一项宝贵资源,而生物的多样性是人类赖以生存和发展的基础。但是目前地球上的生物物种正在以前所未有的速度消失。 8.水污染因素 据全球环境监测系统水质监测项目表明,全球大约有10%的监测河水受到污染,本世纪以来,人类的用水量正在急剧地增加,同时水污染规模也正在不断地扩大,这就形成了新鲜淡水的供与需的一对矛盾。由此可见,水污染的处理将是非常地迫切和重要。 9.有毒废料污染因素 不断增长的有毒化学品不仅对人类的生存构成严重的威胁,而且对地球表面的生态环境也将带来危害。 10地球周期性公转轨迹的变动 地球周期性公转轨迹由椭圆行变为圆形轨迹,距离太阳更近。根据某科学家的研究地球的温度曾经出现过高温和低温的交替,是有一定的规律性的。
lucifer487
黄瓜叶绿素测第几片叶子的方法如下。1、按照常规方法提取黄瓜叶片高光谱图像特征参数,如红边参数和植被指数,分析它们与叶绿素含量之间的关系,发现各参数与叶绿素之间存在一定的相关关系,但是相关性均不高。结果表明,红边参数和植被指数反映的信息较单一,而且必须针对具体情况对其修正,有很大的局限性。2、研究主成分分析法和独立分量法提取高光谱图像特征参数,提取黄瓜叶片高光谱图像光谱维的前10主成分分量和前8个独立分量,分别利用多元回归建立叶绿素含量的预测模型,其预测集相关系数R分别达到0.827和0.831。利用逐步回归比较两种方法,独立分量分析法只需要一个独立分量既能与叶绿素含量的相关系数R达到0.766,而主成分分析法需要前3个主成分综合才能得到相似效果。结果表明,利用独立分量法分析黄瓜叶片高光谱图像,预测叶片叶绿素含量的方法是可行的,且独立分量分析比主成分分析更有优势。3、首次根据独立分量分析法得到的叶绿素含量预测模型,计算出黄瓜叶片叶绿素的分布图。结果表明利用分离出来的独立分量计算得到的黄瓜叶片叶绿素含量分布图与实际情况相符合,为植物营养元素亏缺等研究奠定基础。4、进行二次开发,开发出了一套高光谱图像数据处理软件,集成了基于批量处理的高光谱图像的标定、感兴趣区域提取、各波长图像及其纹理信息提取、独立分量图计算、数据输出等功能,为快速有效的处理高光谱图像海量数据提供了思路,为科研提供了便利。本论文对利用高光谱图像技术预测黄瓜叶片叶绿素含量及其分布进行了初步研究,探索了独立分量法在高光谱图像处理中的应用。
作文叶公好龙怎么写。 [叶公好龙读后感作文]叶公非常喜欢龙,家里什么东西上都画着龙,天上的真龙知道了,就下来,叶公一见,吓得人鬼不是,由此看来,叶公并不真正喜欢
人们总爱站在草坪上,对落花表示惋惜,而听不到小草的呻吟 ——题记 小时候,喜欢和伙伴们到田野里玩耍,田野里的小草搔得脚痒痒的;和伙伴们到山坡上放牛,喜欢在坡上打
湖水为什么呈现碧绿色原因如下:湖水的某种美丽的颜色(如绿色)是溶解了某些矿物质所致,只有在透明度高的湖中,这种颜色才可能显现。湖水的颜色也受制于水深,因为深度只
如果是对诗词的名词解释,只能是注释如果你引用了另外作者对诗词的解释或者心得体会,算是参考文献。但要有文献的名称,出版社或者卷、期等信息。
3000字 这文章,的研究。,不知道你几号需要点