• 回答数

    5

  • 浏览数

    102

吃客声声
首页 > 学术论文 > 矩阵可对角化毕业论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

我们家懒格格

已采纳

我觉得应该是相似对角化吧,具体的步骤是:1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值你看行不?这就是我知道的,呵呵

218 评论

鼎御装饰

矩阵对角化有三种方法

1、利用特征值和特征向量将矩阵对角化

由于这种方法相对来说比较基础、简单、机械,一般教材都有详细介绍,这里用图示加以总结。

2、利用矩阵的初等变换将矩阵对角化

矩阵的初等变换

矩阵的初等行变换和初等列变换,统称矩阵的初等变换。下面的三种变换称为矩阵的初等行变换:

1 对调两行;

2 以数k≠0乘某一行的所有元素;

3 把某一行所有元素的k倍加到另一行对应的元素上去。

把上面定义中的“行”换成“列”,既得矩阵的初等列变换的定义。

如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A与B等价。

另外:分块矩阵也可以定义初等变换。

3、利用矩阵的乘法运算将矩阵对角化

矩阵乘法是一种高效的算法可以把一些一维递推优化到log( n ),还可以求路径方案等,所以更是一种应用性极强的算法。矩阵,是线性代数中的基本概念之一。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分的广泛。

249 评论

小猪乐乐88

交给我处理。

180 评论

ryanhui123

一种吧!设所求矩阵为A,求出它的全部特征值,求(A-£E)x=0的基础解系,再两两正交单位化,得正交矩阵P,再求P-1AP=PTAP=^

303 评论

变猪猪911

这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。

209 评论

相关问答

  • 实对称正定矩阵毕业论文

    好深奥吖~~明明就系同届同学···问d甘嘎高b嘢!!

    攀爬—蜗牛 5人参与回答 2023-12-07
  • 数学矩阵求逆矩阵的毕业论文

    一般使用初等行变换或者伴随矩阵方法,来求逆矩阵。

    蝎子豆丁 2人参与回答 2023-12-12
  • 矩阵可对角化毕业论文

    我觉得应该是相似对角化吧,具体的步骤是:1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=

    吃客声声 5人参与回答 2023-12-07
  • 浅谈矩阵的毕业论文

    据我所知,矩阵可以解高次方程,在线性代数中也有运用。

    没油什么大不了 6人参与回答 2023-12-09
  • 矩阵毕业论文题目

    学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业

    贝贝781213 3人参与回答 2023-12-08