• 回答数

    8

  • 浏览数

    340

魅影幽兰
首页 > 论文发表 > 土耳其教授发表的数学论文

8个回答 默认排序
  • 默认排序
  • 按时间排序

大LY的小世界

已采纳

数学奇才、计算机之父——冯·诺依曼20世纪即将过去,21世纪就要到来.我们站在世纪之交的大门槛,回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".约翰·冯·诺依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对 孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古 希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年成为该校终身教授.1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生. 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席.1954年夏,冯·诺依曼被使现患有癌症,1957年2月8日,在华盛顿去世,终年54岁.冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、鼻子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在 1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题.1933年,冯·诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的. 他对其子代数进行了开创性工作,并莫定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯·诺依曼代数.这是有限维空间中矩阵代数的自然推广. 冯·诺依曼还创立了博奕论这一现代数学的又一重要分支. 1944年发表了奠基性的重要论文《博奕论与经济行为》.论文中包含博奕论的纯粹数学形式的阐述以及对于实际博奕应用的详细说明.文中还包含了诸如统计理论等教学思想.冯·诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作.冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术和数值分析的开拓性工作.现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接见天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进.冯·诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945年,他们在共同讨论的基础上,发表了一个全新的"存储程序通用电子计算机方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写).在这过程中,冯·诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力.EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.EDVAC机还有两个非常重大的改进,即:(1)采用了二进制,不但数据采用二进制,指令也采用二进制;(2建立了存储程序,指令和数据便可一起放在存储器里,并作同样处理.简化了计算机的结构,大大提高了计算机的速度. 1946年7,8月间,冯·诺依曼和戈尔德斯廷、勃克斯在EDVAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股"计算机热",它们的综合设计思想,便是著名的"冯·诺依曼机",其中心就是有存储程序原则--指令和数据一起存储.这个概念被誉为'计算机发展史上的一个里程碑".它标志着电子计算机时代的真正开始,指导着以后的计算机设计.自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到"冯·诺依曼机"的不足,它妨碍着计算机速度的进一步提高,而提出了"非冯·诺依曼机"的设想. 冯·诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献. 冯·诺依曼于1937年获美国数学会的波策奖;1947年获美国总统的功勋奖章、美国海军优秀公民服务奖;1956年获美国总统的自由奖章和爱因斯坦纪念奖以及费米奖.冯·诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要著作收集在六卷《冯·诺依曼全集》中,1961年出版.数学奇才——伽罗华 页首1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。伽罗华去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。“数学之神”——阿基米德 页首阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。数学家的故事——祖冲之 页首祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".数学家的故事——苏步青 页首苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”这就是老一辈数学家那颗爱国的赤子之心数学之父——塞乐斯 页首塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。 塞乐斯最先证明了如下的定理:1.圆被任一直径二等分。2.等腰三角形的两底角相等。3.两条直线相交,对顶角相等。4.半圆的内接三角形,一定是直角三角形。5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。 这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。 塞乐斯的墓碑上列有这样一段题辞:「这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。

187 评论

shop移民Shero

拉玛奴江 1962年12月22日印度发行弓一张纪念邮票。这张邮票是为纪念印度的「国宝」锡里尼哇沙‧拉玛奴江(Srinivasa Ramanujan)诞生七十五周年而发行的。 拉玛奴江是一个生於南印度没落的贫穷婆罗门家庭,没有受过大学育,靠自学及艰苦钻研数学,后来成为一个闻名国际的数学家。 在数学家中,以贫穷家庭出身,而且能在没有研究数学的环境裏,孤独的工作,发现了一些深入的结果的人是不太多。他到了二十七岁时才获得真正数学家的教导,他的才华像彗星突然出现长空,耀眼令人侧目。可惜的是肺病却蚕食了他的生命,他在三十三岁时悄然逝去。 他是淡米尔人,生於1887年12月22日,父亲是一间布店裏的小职员。小时候他大部份的时间是在祖母家裏度过。从小他就喜欢思考问题,曾问老师在天空闪耀的星座的距离,以及地球赤道的长度。在十二岁时始对数学发生兴趣,曾问高班同学:「什麼是数学的最高真理?」当时同学告诉他「毕达高拉斯定理」(即中国人称「商高定理」)是可以作为代表,引起了他对几何的兴趣。 有一天一个老师讲:「三十个果子给三十个人平分,每一个人得到一个。同样的十四个果子给十四个人平分,每一个人得一个果子。」从这裏老师下了结论:任何数给自己除得到是一。拉玛奴江觉得不对,马上站起来问:「是否每一个人也得到一个?」这时数字的奇妙性质引起了他的注意,也差不多在这个时候他对等差,等比级数的性质自己作了研究。 在十三岁时,高班的同学借给他一本Loney 的〈三角学〉一书(以,前,有一些学校采用此书为高中课,中译本书名为〈龙氏三角学〉),他很快把整夬书的习题解完。第二年他得到了正弦和余弦函数的无穷级数展开式,后来他才知这是著名的Euler 公式,他心中有点失望,於是把自己结果的草稿,偷偷地放到裏的屋梁上。 他十五岁时,朋友借给了他二厚册英国人卡尔(Carr)写「纯数的应用数学基本结果大要」一书。这书是写得相当枯燥无味的,罗列了在代数、微积分、三角学和解析几何的六千个定理和公式。这本书对他来说是本好书,他自己证明了其中的一些定理,而以后他研究的基础全是这书给出的。 在1930年他进入了家乡的政府学院,由於贫穷和入学试成绩优越,他获得奖学金,可是在学院裏他太专心於自己善羑的数学,而忽略了其他科目,结果年考不及格而失去了奖学金。在1906年他转到另外一间学院读二年级并参加1907年的「文科第一考试」,。是又失败了。 在1907年到1910年之间,他住在外面,找不到任何工作,有时替朋友补习以换取一些吃的东西。在这段期间,他自己研究魔方阵、连环分数、超几何级数、椭圆积分及一些数论问题,他把自己得到的结果写在二本记事簿裏,生活不安定不能使到他对数学的爱好减少,一个善良的邻居老太太,看他生活困难,几次在中餐时邀他在家裏吃些东西。 根据印度的习俗,他家人在1909年为他安排了婚事,妻子是一个九岁的女孩。在1910年他是二十三岁了,有了家而且因是长子,必须帮助家一些费用,他不得不极力寻找工作,后来朋友推荐他去找印度官员拉奥。 拉奥本身是一个有钱的印度官员,也是印度数学会的创办人之一,认为拉玛奴江不适合做其他工作,很难介绍工作给柋,因此宁愿每个月给他一些钱,够他生活不必去工作,而他自己可以作研究。他很赏识拉玛奴江的数学才能。 接玛奴江只好接受这些钱,又继续他的究工作。每天傍晚时分才在马德拉斯(Madras)的海边散步和朋友聊天作为休息。有一天一个老朋友遇到他,就对他说:「人们称赞你有数学的天才!」拉玛奴江听了笑道:「天才?!请你看看我的肘吧!」他的肘的皮肤显得又黑又厚。他解释他日夜在石板上计算,用破布来擦掉石板上的字太花时间了,他每几分钟就用肘直接擦石板的字。朋友问他既然要作这麼多计算为甚麼不用纸来写。拉玛奴江说他连吃饭都成问题,那裏有钱去买大量的纸来用,原来接玛奴江觉得依靠别人生活心里是很惭愧,已经有一个月不去拿钱了。 很幸运拉玛奴江获得了奖学金,在1913年5月开始,他每个月获得七十五卢比。不久他的朋友协助他用英文写了一封信给英国剑桥大学的著名数学家哈地球(G.H.Hardy)教授,在这信裏列下了他以前研究得到的一百二十个定理和公式。 哈地教授看到他的一些结果,有些是重新发现一百年前大数学家的结果,有一些是错误,有一些是非常深入困难,经过许多波折,拉玛奴江总算来到了英国。哈地认为要教他现代数学,如果照常规从头学起,很可能会对拉玛奴江的才能有损害。而他又不能停留在对现代数学无知的状态。因此哈地用自己独特的方法帮助他学习,终於拉玛奴江掌握了较健全的现代分析理论的知识。比他教给拉玛奴江的还多。 从1914到1918年拉玛奴江和教授写了许多重要的数学论文。由於他是个虔诚的婆罗门教徒,绝对奉行素食主义,在英国生活那段时间,他自己煮自己的食物,而常常因研究而忘记吃饭,他的身体越来越衰弱,后来常感到身上有无名的疼痛。 后来才发现他患上了无法医治的肺病。在英国医院住了一个时期。哈地教授讲他在病中的一个故事: 有一天哈地乘了一辆出租汽车去看他,这车牌号码是1729。哈地对拉玛奴江讲出了这个数字,看来没有甚麼意义。可是拉玛奴江想一下马上回答:「这是最小的整数能用二种方法来表示二个整数的立方的和。」(1729=13+123=93+103) 拉玛奴江被称为数学的预言家,他死后已经有五十四年了,可是他的一些预测的结果,还是目前数学家正想法证明的。 他在1920年4月26日死於麻特拉斯,马德拉斯大学后来建立了一个高等数学研究所,就用他的名字来命名。而在1974年还准备在研究所门前为他矗立一个大理半身像。 如果他英灵有知,或许他会说:「不必替我立像,应该求求那些正在饿死的小孩,他们有许多会是未来的拉玛奴江!」

144 评论

jiangyue514悦兔

1962年12月22日印度发行弓一张纪念邮票。这张邮票是为纪念印度的「国宝」锡里尼哇沙‧拉玛奴江(Srinivasa Ramanujan)诞生七十五周年而发行的。 拉玛奴江是一个生於南印度没落的贫穷婆罗门家庭,没有受过大学育,靠自学及艰苦钻研数学,后来成为一个闻名国际的数学家。 在数学家中,以贫穷家庭出身,而且能在没有研究数学的环境裏,孤独的工作,发现了一些深入的结果的人是不太多。他到了二十七岁时才获得真正数学家的教导,他的才华像彗星突然出现长空,耀眼令人侧目。可惜的是肺病却蚕食了他的生命,他在三十三岁时悄然逝去。 他是淡米尔人,生於1887年12月22日,父亲是一间布店裏的小职员。小时候他大部份的时间是在祖母家裏度过。从小他就喜欢思考问题,曾问老师在天空闪耀的星座的距离,以及地球赤道的长度。在十二岁时始对数学发生兴趣,曾问高班同学:「什麼是数学的最高真理?」当时同学告诉他「毕达高拉斯定理」(即中国人称「商高定理」)是可以作为代表,引起了他对几何的兴趣。 有一天一个老师讲:「三十个果子给三十个人平分,每一个人得到一个。同样的十四个果子给十四个人平分,每一个人得一个果子。」从这裏老师下了结论:任何数给自己除得到是一。拉玛奴江觉得不对,马上站起来问:「是否每一个人也得到一个?」这时数字的奇妙性质引起了他的注意,也差不多在这个时候他对等差,等比级数的性质自己作了研究。 在十三岁时,高班的同学借给他一本Loney 的〈三角学〉一书(以,前,有一些学校采用此书为高中课,中译本书名为〈龙氏三角学〉),他很快把整夬书的习题解完。第二年他得到了正弦和余弦函数的无穷级数展开式,后来他才知这是著名的Euler 公式,他心中有点失望,於是把自己结果的草稿,偷偷地放到裏的屋梁上。 他十五岁时,朋友借给了他二厚册英国人卡尔(Carr)写「纯数的应用数学基本结果大要」一书。这书是写得相当枯燥无味的,罗列了在代数、微积分、三角学和解析几何的六千个定理和公式。这本书对他来说是本好书,他自己证明了其中的一些定理,而以后他研究的基础全是这书给出的。 在1930年他进入了家乡的政府学院,由於贫穷和入学试成绩优越,他获得奖学金,可是在学院裏他太专心於自己善羑的数学,而忽略了其他科目,结果年考不及格而失去了奖学金。在1906年他转到另外一间学院读二年级并参加1907年的「文科第一考试」,。是又失败了。 在1907年到1910年之间,他住在外面,找不到任何工作,有时替朋友补习以换取一些吃的东西。在这段期间,他自己研究魔方阵、连环分数、超几何级数、椭圆积分及一些数论问题,他把自己得到的结果写在二本记事簿裏,生活不安定不能使到他对数学的爱好减少,一个善良的邻居老太太,看他生活困难,几次在中餐时邀他在家裏吃些东西。 根据印度的习俗,他家人在1909年为他安排了婚事,妻子是一个九岁的女孩。在1910年他是二十三岁了,有了家而且因是长子,必须帮助家一些费用,他不得不极力寻找工作,后来朋友推荐他去找印度官员拉奥。 拉奥本身是一个有钱的印度官员,也是印度数学会的创办人之一,认为拉玛奴江不适合做其他工作,很难介绍工作给柋,因此宁愿每个月给他一些钱,够他生活不必去工作,而他自己可以作研究。他很赏识拉玛奴江的数学才能。 接玛奴江只好接受这些钱,又继续他的究工作。每天傍晚时分才在马德拉斯(Madras)的海边散步和朋友聊天作为休息。有一天一个老朋友遇到他,就对他说:「人们称赞你有数学的天才!」拉玛奴江听了笑道:「天才?!请你看看我的肘吧!」他的肘的皮肤显得又黑又厚。他解释他日夜在石板上计算,用破布来擦掉石板上的字太花时间了,他每几分钟就用肘直接擦石板的字。朋友问他既然要作这麼多计算为甚麼不用纸来写。拉玛奴江说他连吃饭都成问题,那裏有钱去买大量的纸来用,原来接玛奴江觉得依靠别人生活心里是很惭愧,已经有一个月不去拿钱了。 很幸运拉玛奴江获得了奖学金,在1913年5月开始,他每个月获得七十五卢比。不久他的朋友协助他用英文写了一封信给英国剑桥大学的著名数学家哈地球(G.H.Hardy)教授,在这信裏列下了他以前研究得到的一百二十个定理和公式。 哈地教授看到他的一些结果,有些是重新发现一百年前大数学家的结果,有一些是错误,有一些是非常深入困难,经过许多波折,拉玛奴江总算来到了英国。哈地认为要教他现代数学,如果照常规从头学起,很可能会对拉玛奴江的才能有损害。而他又不能停留在对现代数学无知的状态。因此哈地用自己独特的方法帮助他学习,终於拉玛奴江掌握了较健全的现代分析理论的知识。比他教给拉玛奴江的还多。 从1914到1918年拉玛奴江和教授写了许多重要的数学论文。由於他是个虔诚的婆罗门教徒,绝对奉行素食主义,在英国生活那段时间,他自己煮自己的食物,而常常因研究而忘记吃饭,他的身体越来越衰弱,后来常感到身上有无名的疼痛。 后来才发现他患上了无法医治的肺病。在英国医院住了一个时期。哈地教授讲他在病中的一个故事: 有一天哈地乘了一辆出租汽车去看他,这车牌号码是1729。哈地对拉玛奴江讲出了这个数字,看来没有甚麼意义。可是拉玛奴江想一下马上回答:「这是最小的整数能用二种方法来表示二个整数的立方的和。」(1729=13+123=93+103) 拉玛奴江被称为数学的预言家,他死后已经有五十四年了,可是他的一些预测的结果,还是目前数学家正想法证明的。 他在1920年4月26日死於麻特拉斯,马德拉斯大学后来建立了一个高等数学研究所,就用他的名字来命名。而在1974年还准备在研究所门前为他矗立一个大理半身像。 如果他英灵有知,或许他会说:「不必替我立像,应该求求那些正在饿死的小孩,他们有许多会是未来的拉玛奴江!」Top高斯 高斯-被誉为「数学王子」的德国大数学家,物理学家和天文 学家。 德国大数学家高斯 ( Carl Friedrich Gauss 1777-1855 ) 是德国最伟大,最杰出的科学家,如果单纯以他的数学成就来说,很少在一门数学的分支里没有用到他的一些研究成果。贫寒家庭出身 高斯的祖父是农民,父亲除了从事园艺的工作外,也当过各色各样的杂工,如护堤员、建筑工等等。父亲由於贫穷,本身没有受过什麼教育。 母亲在三十四岁时才结婚,三十五岁生下了高斯。她是一名石匠的女儿,有一个很聪明的弟弟,他手巧心灵是当地出名的织绸能手,高斯的这位舅舅,对小高斯很照顾,有机会就教育他,把他所知道的一些知识传授给他。而父亲可以说是一名”大老粗”,认为只有力气能挣钱,学问对穷人是没有用的。 高斯在晚年喜欢对自己的小孙儿讲述自己小时候的故事,他说他在还不会讲话的时候,就已经学会计算了。 他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算出来。 父亲念出钱数,准备写下时,身边传来微小的声音:「爸爸!算错了,钱应该是这样.....。」 父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地方是没有人教过高斯怎麼样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。 另外一个著名的故事亦可以说明高斯很小时就有很快的计算能力。当他还在小学读书时,有一天,算术老师要求全班同学算出以下的算式: 1 + 2 + 3 + 4 + ....+ 98 + 99 + 100 = ?在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其他孩子算到头昏脑胀,还是算不出来。最后只有高斯的答案是正确无误。 原来 1 +100= 101 2 + 99 = 101 3 + 98 = 101 . . . 50 + 51 = 101 前后两项两两相加,就成了50对和都是 101的配对了即 101 × 50 = 5050。 按:今用公式 表示 1 + 2 + ... + n 高斯的家里很穷,在冬天晚上吃完饭后,父亲就要高斯上床睡觉,这样可以节省燃料和灯油。高斯很喜欢读书,他往往带了一捆芜菁上他的顶楼去,他把芜菁当中挖空,塞进用粗棉卷成的灯芯,用一些油脂当烛油,於是就在这发出微弱光亮的灯下,专心地看书。等到疲劳和寒冷压倒他时,他才钻进被窝睡觉。 高斯的算术老师本来是对学生态度不好,他常认为自己在穷乡僻壤教书是怀才不遇,现在发现了「神童」,他是很高兴。但是很快他就感到惭愧,觉得自己懂的数学不多,不能对高斯有什麼帮助。 他去城里自掏腰包买了一本数学书送给高斯,高斯很高兴和比他大差不多十岁的老师的助手一起学习这本书。这个小孩和那个少年建立起深厚的感情,他们花许多时间讨论这里面的东西。 高斯在十一岁的时候就发现了二项式定理 ( x + y )n的一般情形,这里 n可以是正负整数或正负分数。当他还是一个小学生时就对无穷的问题注意了。 有一天高斯在走回家时,一面走一面全神贯注地看书,不知不觉走进了布伦斯维克 ( Braunschweig ) 宫的庭园,这时布伦斯维克公爵夫人看到这个小孩那麼喜欢读书,於是就和他交谈,她发现他完全明白所读的书的深奥内容。 公爵夫人回去报告给公爵知道,公爵也听说过在他所管辖的领地有一个聪明小孩的故事,於是就派人把高斯叫去宫殿。 费迪南公爵 ( Duke Ferdinand ) 很喜欢这个害羞的孩子,也赏识他的才能,於是决定给他经济援助,让他有机会受高深教育,费迪南公爵对高斯的照顾是有利的,不然高斯的父亲是反对孩子读太多书,他总认为工作赚钱比去做什麼数学研究是更有用些,那高斯又怎麼会成材呢?高斯的学校生涯 在费迪南公爵的善意帮助下,十五岁的高斯进入一间著名的学院(程度相当於高中和大学之间)。在那里他学习了古代和现代语言,同时也开始对高等数学作研究。 他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的作品。他对牛顿的工作特别钦佩,并很快地掌握了牛顿的微积分理论。 1795年10月他离开家乡的学院到哥庭根 ( Gottingen )去念大学。哥庭根大学在德国很有名,它的丰富数学藏书吸引了高斯。许多外国学生也到那里学习语言、神学、法律或医学。这是一个学术风气很浓厚的城市。 高斯这时候不知道要读什麼系,语言系呢还是数学系?如果以实用观点来看,学数学以后找生活是不大容易的。 可是在他十八岁的前夕,现在数学上的一个新发现使他决定终生研究数学。这发现在数学史上是很重要的。 我们知道当 n ≥ 3 时,正 n 边形是指那些每一边都相等,内角也一样的 n 边多边形。 希腊的数学家早知道用圆规和没有刻度的直尺画出正三、四、五、十五边形。但是在这之后的二千多年以来没有人知道怎麼用直尺和圆规构造正十一边、十三边、十四边、十七边多边形。 还不到十八岁的高斯发现了:一个正 n 边形可以用直尺和圆规画出当且仅当 n 是底下两种形式之一: k= 0,1,2, ... 十七世纪时法国数学家费马 ( Fermat ) 以为公式在 k = 0, 1, 2, 3, ....给出素数。(事实上,目前只确定 F0,F1,F2,F4是质数,F5不是)。 高斯用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。他是那麼的兴奋,因此决定一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。 1799年高斯呈上他的博士论文,这论文证明了代数一个重要的定理:任何一元代数方程都有根。这结果数学上称为”代数基本定理”。 事实上在高斯之间有许多数学家认为已给出了这个结果的证明,可是没有一个证是严密的,高斯是第一个数学家给出严密无误的证明,高斯认为这个定理是很重要的,在他一生中给了一共四个不同的证明。高斯没有钱印刷他的学位论文,还好费迪南公爵给他钱印刷。 二十岁时高斯在他的日记上写,他有许多数学想法出现在脑海中,由於时间不定,因此只能记录一小部份。幸亏他把研究的成果写成一本叫<算学研究>,并且在二十四岁时出版,这书是用拉丁文写,原来有八章,由於钱不够,只好印七章,这书可以说是数论第一本有系统的著作,高斯第一次介绍”同余”这个概念。Top巴比仑 灿烂的古巴比仑文化 发源於现在土耳其境内的底格里斯河(Tigris)和幼发拉底河 (Euphrates) ,向东南方流入波斯湾。河流经过现在的叙利亚和伊拉克。 现在我们生活的「星期制度」是源於古代巴比仑。巴比仑人把一年分为十二个月,七天组成一个星期,一个星期的最后一天减少工作,用来举行宗教礼拜,称为安息日-这就是我们现在的礼拜日。 我们现在一天二十四小时,一小时有六十分,一分有六十秒这种时间分法就是巴比仑人创立的。在数学上把圆分三百六十度,一度有六十分这类六十进位制的角度衡量也是巴比仑人的贡献。 古代巴比仑人的书写工具是很奇特的,他们利用到处可见的粘泥,制成一块块长方薄饼,这就是他们的纸。然后用一端磨尖的金属棒当笔写成了「楔形文字」 (cuneiform) ,形成泥板书。 希腊的旅行家曾记载巴比仑人为农业的需要而兴建的运河,工程的宏大令人惊叹。而城市建筑的豪美,商业贸易的频繁,有许多人从事法律、宗教、科学、艺术、建筑、教育及机械工程的研究,这是当时其他国家少有的。 可是巴比仑盛极一时,以后就衰亡了,许多城市埋葬在黄土沙里,巴比仑成为传说神话般的国土,人们在地面上找不到这国家的痕迹,曾是闻名各地的「空中花园」埋在几十米的黄土下,上面只有野羊奔跑的荒原。 到了十九世纪四十年代,法国和英国考古学家发掘了古城及获得很多文物,世人才能重新目睹这个地面上失踪的古国,了解其文化兴盛的情况。特别是英国人拉雅( Loyard)在尼尼微(Nineveh)挖掘到皇家图书馆,两间房藏有二万六千多件泥板书,包含历史、文学、外交、商业、科学、医药的记录。巴比仑人知道五百种药,懂得医治像耳痛及眼炎,而生物学家记载几百种植物的名字及其性质。化学家懂得一些矿物的性质,除了药用外,而且还利用提炼金属,制陶器及制玻璃的水平很高。 有这样高文化水平的民族,他们的数学也该是不错吧?这里就谈谈他们这方面的贡献。巴比仑人的记数法 巴比仑人用两种进位法:一种是十进位,另外一种是六十进位。 十进位是我们现在普通日常生活中所用的方法,打算盘的「逢十进一」就是基於这种原理。 巴比仑人没有算盘,但他们发明了这样的「计算工具」协助计算(图一)。在地上挖三个长条小槽,或者特制有三个小糟的泥块,用一些金属小球代表数字。比方说:巴比仑城南的农民交来了 429 袋的麦作为国王的税金,而城东的农民交来了 253 袋的麦。因此国王的仓库增加了 429 + 253 = 682 袋粮食。我们用笔算一下子就得到答案,可是巴比仑人却是先在泥板上的小槽上分别放上:4 个, 2 个,9 个的金属球,这代表了 429。然后在置放 4 个金属球的小槽上添加 2 个小球,中间槽上添加 5 个小球,最后的小槽上添加3 个小球。 现在最后一列的小槽上有 12 个小球,巴比仑人就取掉十个,在中间那个槽里添上 1 个小球-这也就是「逢十进一」。 最后泥板上的数字 682 就是加的结果。这不是很好玩吗?(图二)我们可以利用这方法以实物教儿童认识一些大数的加法。六十进位制目前是较少用到,除了在时间上我们说:一小时 = 60 分,1 分 = 60 秒外,在其他场合我们都是用十进位制。 可是你知道吗?就是古代的巴比仑人定下一年有三百六十五天, 十二个月,一个月有二十九天或三十天,每七天为一个星期,一个圆有三百六十度,一小时有六十分,一分有六十秒等等,我们现代还是继续采用。 考古学家在一块长三又八分之一吋,宽二吋,厚四分之三吋的泥板书上发现了巴比仑人的记数法。这泥板的中间从上到下有像(图四)的符号:读者可以看出这是代表:1,2,3,4,5,6,7,8,9,10,11,12,13。这泥板书受到盐和灰尘的侵蚀,但可以看到泥板书的右边前五行是形如:很明显的这应该代表 10,20,30,40,50。 可是接下来的却是这样的符号:如果我们前面知道的符号是写成:

89 评论

仗剑拂衣去

陈景润:小时候,教授送我一颗明珠 20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。 不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。 小小陈景润,自己对自己因材施教着。 一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。 沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。 大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。 师手遗“珠“,照亮少年奋斗的前程 “我们都知道,在正整数中,2、4、6、8、10......,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“ 像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。 “二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。 “但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。 该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。 “数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!” 沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲: “你行吗?你能摘下这颗数学皇冠上的明珠吗?” 一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。 1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)! 1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。 名人成长路 陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)。 女数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。 从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。 17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史只有100年。 数学会女前辈高扬芝 高扬芝(1906-1978 ),江西南昌人,从小学习勤奋,特别喜欢数学。 高中毕业后考入北京大学数学系,由于学习成绩优秀,1930年大学毕业后应聘到上海大同大学担任数学教员,后成为教授、数学系主任。在课堂教学中,她遵循《学记》中所说的:“善歌者使人继其声,善教者使人继其志。”所以,高扬芝的数学教学一贯是兢兢业业、讲求实效,深受学生欢迎。 高扬芝长期从事数学分析(旧时叫高等微积分)、高等代数和复变函数等课程的教学与研究。她深知,高等数学比初等数学更加抽象,外行人常常把它看成是由冷酷的定义、定理、法则统治着的王国。因此,高教授常常告诉学生,数学结构严谨,证明简洁,蕴含着数学的美。它像一座迷宫,只要你潜心学习、研究,就能寻求到走出迷宫的正确道路。一旦顺利走出迷宫,成功的愉悦会使你兴奋不已,你会向新的、更复杂的迷宫挑战,这就是数学的魅力。 她在上海大同大学工作不到五年的时间里,自身潜在的科研天赋很快被唤醒催发。经过刻苦钻研教材,结合教学实践,她撰写出论文《Clebsch氏级数改正》,1935年在交通大学主编的《科学通讯》上连载,得到同行好评。解放后,她又著有《极限浅说》《行列式》等科普读物多部。 高扬芝是中国数学会创始时的少数女性前辈之一。1935年7月25日中国数学会在上海交通大学图书馆举行成立大会,共有33人出席,高扬芝就是其中的一位。在这次年会上,她被推选为中国数学会评议会评议,后连任第二、三届评议会评议。1951年8月,中国数学会在北京大学召开了规模空前的第一次全国代表大会,高扬芝出席了大会。她是这次到会代表63人中惟一的女代表。20世纪60年代,她被选为江苏省数学会副理事长。 第一位数学女博士徐瑞云 徐瑞云,1915年6月15日生于上海,1927年2月考入上海著名的公立务本女中读书。徐瑞云从小喜欢数学,读中学时对数学的兴趣更加浓厚,因此,1932年9月高中毕业后报考了浙江大学数学系。当时,浙大数学系的教授有朱叔麟、钱宝琮、陈建功和苏步青。此外,还有几位讲师、助教。数学系的课程主要由陈建功和苏步青担任。当时数学系的学生很少,前一届两个班学生共五人,她这届也不过十几人。 当时苏步青才30岁,看上去十分年轻,因此徐瑞云的同学中有人认为苏步青是助教,可是听完一堂课后就不住地赞叹说:“想不到助教竟能讲得这么好。”这件事引起知情者的哄笑。徐瑞云在陈建功和苏步青的教导下,勤奋学习,专心听讲,认真做笔记,她的考试成绩经常是满分。1936年7月,徐瑞云以优异成绩毕业了,被浙大数学系留校任助教。1937年2月,26岁的徐瑞云与28岁的生物系助教江希明喜结伉俪。新婚三个月后,徐瑞云夫妇获得亨伯特留学德国的奖学金,双双乘船漂洋赴德国留学,攻读博士学位。 徐瑞云有幸被德国著名的数学大师卡拉凯屋独利接受,由他担任她的数学博士指导老师。当时有不少学生想请他作导师,他都没有同意。而徐瑞云这位东方女士因学习勤奋,数学功底扎实,成了卡拉凯屋独利的关门弟子。徐瑞云主要研究三角级数论。这门学科起源于物理学的热传导问题的傅里叶分析的主要部分,是当时国际上研究的热门之一,在中国还是一个空白。 徐瑞云为将来能在分析、函数论方面赶上世界先进水平,废寝忘食,广撷博采,把大部分时间都用在图书馆里。1940年底,徐瑞云获得博士学位,成了中国历史上第一位女数学博士。她的博士论文“关于勒贝格分解中奇异函数的傅里叶展开”,1941年发表在德国《数学时报》上。 完成学业的徐瑞云夫妇,随即离德回国,于1941年4月回到母校,双双被聘为副教授,正式登上在战火硝烟的大后方培养人才的讲台。在艰苦的条件下,陈建功和苏步青没有中断在杭州时共创的函数论和微分几何两个数学讨论班,这是一种教学相长、遴选英彦的科研形式,徐瑞云也参与其间。1944年11月,英国驻华科学考察团团长李约瑟参观了浙大数学系和理学院,连声称赞道:“你们这里是东方的剑桥!”这更加激励了徐瑞云的勤奋工作。她这时教的学生曹锡华、叶彦谦、金福临、赵民义、孙以丰、杨宗道等,后来都成了杰出的数学家和数学教育家。1946年,31岁的徐瑞云提升为正教授。 1952年,徐瑞云调入浙江师院,被任命为数学系主任,从此全身投入了艰苦的创建数学系的工作中。在她的领导下,没有几年功夫,数学系已初具规模,教学质量不断提高。第一届本科毕业生约有三分之一考取了研究生。他们系也成为全国同行的楷模,进入全国同行前列。徐瑞云在建设数学系的同时,没有忘记科学研究。她翻译了苏联那汤松的名著《实变函数论》。译本于1955年由高等教育出版社出版。华罗庚,1910年11月12日出生于江苏金坛县,父亲以开杂货铺为生。他幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”。他进入金坛县立初中后,其数学才能被老师王维克发现,并尽心尽力予以培养。初中毕业后,华罗庚曾入上海中华职业学校就读,因拿不出学费而中途退学,故一生只有初中毕业文凭。 此后,他开始顽强自学,每天达10个小时以上。他用5年时间学完了高中和大学低年级的全部数学课程。1928年,他不幸染上伤寒病,靠新婚妻子的照料得以挽回性命,却落下左腿残疾。20岁时,他以一篇论文轰动数学界,被清华大学请去工作。 从1931年起,华罗庚在清华大学边工作边学习,用一年半时间学完了数学系全部课程。他自学了英、法、德文,在国外杂志上发表了三篇论文后,被破格任用为助教。1936年夏,华罗庚被保送到英国剑桥大学进修,两年中发表了十多篇论文,引起国际数学界赞赏。1938年,华罗庚访英回国,在西南联合大学任教授。在昆明郊外一间牛棚似的小阁楼里,他艰难地写出名著《堆垒素数论》。1946年3月,他应邀访问苏联,回国后不顾反动当局的限制,在昆明为青年作“访苏三月记”的报告。1946年9月,华罗庚应纽约普林斯顿大学邀请去美国讲学,并于1948年被美国伊利诺依大学聘为终身教授。不久,妻子带着三个儿子来到美国与其团聚。 1949年,华罗庚毅然放弃优裕生活携全家返回祖国。1950年3月,他到达北京,随后担任了清华大学数学系主任、中科院数学所所长等职。50年代,他在百花齐放、百家争鸣的学术空气下著述颇丰,还发现和培养了王元、陈景润等数学人才。1956年,他着手筹建中科院计算数学研究所。1958年,他担任中国科技大学副校长兼数学系主任。从1960年起,华罗庚开始在工农业生产中推广统筹法和优选法,足迹遍及27个省市自治区,创造了巨大的物质财富和经济效益。1978年3月,他被任命为中科院副院长并于翌年入党。 晚年的华罗庚不顾年老体衰,仍然奔波在建设第一线。他还多次应邀赴欧美及香港地区讲学,先后被法国南锡大学、美国伊利诺依大学、香港中文大学授予荣誉博士学位,还于1984年以全票当选为美国科学院外籍院士。1985年6月12日,他在日本东京作学术报告时,因心脏病突发不幸逝世,享年74岁 回答者:lionel_future - 兵卒 一级 7-20 10:13中国古代数学家--祖冲之 他的家庭,从曾祖父起,大都对天文、历法和数学很有研究。祖冲之从小就阅读了许多天文和数学方面的书籍,勤奋好学,刻苦实践,亲自观察天象,进行推算,终于使他成为中国古代杰出的数学家和天文学家。 在汉以前,中国一般用三作为圆周率数值,即... 中国古代数学家-墨子 科学家小时候勤奋学习故事 中国古代名人故事 教育故事>>名人故事:中国科学家 中国古代数学家-墨子 中国古代数学家-墨子 中国基础教育网 墨子[公元前468-376年] ,名翟,战国时期鲁国人,他是中国古代一位著名的学者。他创立了墨家学派,倡兼爱学说,《墨经》并非墨子一人所着,但书... 中国古代数学家-刘徽 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章...刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代... 数学家华罗庚小时候的轶事 华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。 华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。 金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少? 陈景润:小时候,教授送我一颗明珠 20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。 不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。 小小陈景润,自己对自己因材施教着。 一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。 沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。 大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。 师手遗“珠“,照亮少年奋斗的前程 “我们都知道,在正整数中,2、4、6、8、10......,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“ 像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。 “二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。 “但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。 该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。 “数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!” 沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲: “你行吗?你能摘下这颗数学皇冠上的明珠吗?” 一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。 1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)! 1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。 名人成长路 陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)

244 评论

秋意凉漠

拉玛奴江 1962年12月22日印度发行弓一张纪念邮票。这张邮票是为纪念印度的「国宝」锡里尼哇沙‧拉玛奴江(Srinivasa Ramanujan)诞生七十五周年而发行的。 拉玛奴江是一个生於南印度没落的贫穷婆罗门家庭,没有受过大学育,靠自学及艰苦钻研数学,后来成为一个闻名国际的数学家。 在数学家中,以贫穷家庭出身,而且能在没有研究数学的环境裏,孤独的工作,发现了一些深入的结果的人是不太多。他到了二十七岁时才获得真正数学家的教导,他的才华像彗星突然出现长空,耀眼令人侧目。可惜的是肺病却蚕食了他的生命,他在三十三岁时悄然逝去。 他是淡米尔人,生於1887年12月22日,父亲是一间布店裏的小职员。小时候他大部份的时间是在祖母家裏度过。从小他就喜欢思考问题,曾问老师在天空闪耀的星座的距离,以及地球赤道的长度。在十二岁时始对数学发生兴趣,曾问高班同学:「什麼是数学的最高真理?」当时同学告诉他「毕达高拉斯定理」(即中国人称「商高定理」)是可以作为代表,引起了他对几何的兴趣。 有一天一个老师讲:「三十个果子给三十个人平分,每一个人得到一个。同样的十四个果子给十四个人平分,每一个人得一个果子。」从这裏老师下了结论:任何数给自己除得到是一。拉玛奴江觉得不对,马上站起来问:「是否每一个人也得到一个?」这时数字的奇妙性质引起了他的注意,也差不多在这个时候他对等差,等比级数的性质自己作了研究。 在十三岁时,高班的同学借给他一本Loney 的〈三角学〉一书(以,前,有一些学校采用此书为高中课,中译本书名为〈龙氏三角学〉),他很快把整夬书的习题解完。第二年他得到了正弦和余弦函数的无穷级数展开式,后来他才知这是著名的Euler 公式,他心中有点失望,於是把自己结果的草稿,偷偷地放到裏的屋梁上。 他十五岁时,朋友借给了他二厚册英国人卡尔(Carr)写「纯数的应用数学基本结果大要」一书。这书是写得相当枯燥无味的,罗列了在代数、微积分、三角学和解析几何的六千个定理和公式。这本书对他来说是本好书,他自己证明了其中的一些定理,而以后他研究的基础全是这书给出的。 在1930年他进入了家乡的政府学院,由於贫穷和入学试成绩优越,他获得奖学金,可是在学院裏他太专心於自己善羑的数学,而忽略了其他科目,结果年考不及格而失去了奖学金。在1906年他转到另外一间学院读二年级并参加1907年的「文科第一考试」,。是又失败了。 在1907年到1910年之间,他住在外面,找不到任何工作,有时替朋友补习以换取一些吃的东西。在这段期间,他自己研究魔方阵、连环分数、超几何级数、椭圆积分及一些数论问题,他把自己得到的结果写在二本记事簿裏,生活不安定不能使到他对数学的爱好减少,一个善良的邻居老太太,看他生活困难,几次在中餐时邀他在家裏吃些东西。 根据印度的习俗,他家人在1909年为他安排了婚事,妻子是一个九岁的女孩。在1910年他是二十三岁了,有了家而且因是长子,必须帮助家一些费用,他不得不极力寻找工作,后来朋友推荐他去找印度官员拉奥。 拉奥本身是一个有钱的印度官员,也是印度数学会的创办人之一,认为拉玛奴江不适合做其他工作,很难介绍工作给柋,因此宁愿每个月给他一些钱,够他生活不必去工作,而他自己可以作研究。他很赏识拉玛奴江的数学才能。 接玛奴江只好接受这些钱,又继续他的究工作。每天傍晚时分才在马德拉斯(Madras)的海边散步和朋友聊天作为休息。有一天一个老朋友遇到他,就对他说:「人们称赞你有数学的天才!」拉玛奴江听了笑道:「天才?!请你看看我的肘吧!」他的肘的皮肤显得又黑又厚。他解释他日夜在石板上计算,用破布来擦掉石板上的字太花时间了,他每几分钟就用肘直接擦石板的字。朋友问他既然要作这麼多计算为甚麼不用纸来写。拉玛奴江说他连吃饭都成问题,那裏有钱去买大量的纸来用,原来接玛奴江觉得依靠别人生活心里是很惭愧,已经有一个月不去拿钱了。 很幸运拉玛奴江获得了奖学金,在1913年5月开始,他每个月获得七十五卢比。不久他的朋友协助他用英文写了一封信给英国剑桥大学的著名数学家哈地球(G.H.Hardy)教授,在这信裏列下了他以前研究得到的一百二十个定理和公式。 哈地教授看到他的一些结果,有些是重新发现一百年前大数学家的结果,有一些是错误,有一些是非常深入困难,经过许多波折,拉玛奴江总算来到了英国。哈地认为要教他现代数学,如果照常规从头学起,很可能会对拉玛奴江的才能有损害。而他又不能停留在对现代数学无知的状态。因此哈地用自己独特的方法帮助他学习,终於拉玛奴江掌握了较健全的现代分析理论的知识。比他教给拉玛奴江的还多。 从1914到1918年拉玛奴江和教授写了许多重要的数学论文。由於他是个虔诚的婆罗门教徒,绝对奉行素食主义,在英国生活那段时间,他自己煮自己的食物,而常常因研究而忘记吃饭,他的身体越来越衰弱,后来常感到身上有无名的疼痛。 后来才发现他患上了无法医治的肺病。在英国医院住了一个时期。哈地教授讲他在病中的一个故事: 有一天哈地乘了一辆出租汽车去看他,这车牌号码是1729。哈地对拉玛奴江讲出了这个数字,看来没有甚麼意义。可是拉玛奴江想一下马上回答:「这是最小的整数能用二种方法来表示二个整数的立方的和。」(1729=13+123=93+103) 拉玛奴江被称为数学的预言家,他死后已经有五十四年了,可是他的一些预测的结果,还是目前数学家正想法证明的。 他在1920年4月26日死於麻特拉斯,马德拉斯大学后来建立了一个高等数学研究所,就用他的名字来命名。而在1974年还准备在研究所门前为他矗立一个大理半身像。 如果他英灵有知,或许他会说:「不必替我立像,应该求求那些正在饿死的小孩,他们有许多会是未来的拉玛奴江!」Top高斯 高斯-被誉为「数学王子」的德国大数学家,物理学家和天文 学家。 德国大数学家高斯 ( Carl Friedrich Gauss 1777-1855 ) 是德国最伟大,最杰出的科学家,如果单纯以他的数学成就来说,很少在一门数学的分支里没有用到他的一些研究成果。贫寒家庭出身 高斯的祖父是农民,父亲除了从事园艺的工作外,也当过各色各样的杂工,如护堤员、建筑工等等。父亲由於贫穷,本身没有受过什麼教育。 母亲在三十四岁时才结婚,三十五岁生下了高斯。她是一名石匠的女儿,有一个很聪明的弟弟,他手巧心灵是当地出名的织绸能手,高斯的这位舅舅,对小高斯很照顾,有机会就教育他,把他所知道的一些知识传授给他。而父亲可以说是一名”大老粗”,认为只有力气能挣钱,学问对穷人是没有用的。 高斯在晚年喜欢对自己的小孙儿讲述自己小时候的故事,他说他在还不会讲话的时候,就已经学会计算了。 他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算出来。 父亲念出钱数,准备写下时,身边传来微小的声音:「爸爸!算错了,钱应该是这样.....。」 父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地方是没有人教过高斯怎麼样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。 另外一个著名的故事亦可以说明高斯很小时就有很快的计算能力。当他还在小学读书时,有一天,算术老师要求全班同学算出以下的算式: 1 + 2 + 3 + 4 + ....+ 98 + 99 + 100 = ?在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其他孩子算到头昏脑胀,还是算不出来。最后只有高斯的答案是正确无误。 原来 1 +100= 101 2 + 99 = 101 3 + 98 = 101 . . . 50 + 51 = 101 前后两项两两相加,就成了50对和都是 101的配对了即 101 × 50 = 5050。 按:今用公式 表示 1 + 2 + ... + n 高斯的家里很穷,在冬天晚上吃完饭后,父亲就要高斯上床睡觉,这样可以节省燃料和灯油。高斯很喜欢读书,他往往带了一捆芜菁上他的顶楼去,他把芜菁当中挖空,塞进用粗棉卷成的灯芯,用一些油脂当烛油,於是就在这发出微弱光亮的灯下,专心地看书。等到疲劳和寒冷压倒他时,他才钻进被窝睡觉。 高斯的算术老师本来是对学生态度不好,他常认为自己在穷乡僻壤教书是怀才不遇,现在发现了「神童」,他是很高兴。但是很快他就感到惭愧,觉得自己懂的数学不多,不能对高斯有什麼帮助。 他去城里自掏腰包买了一本数学书送给高斯,高斯很高兴和比他大差不多十岁的老师的助手一起学习这本书。这个小孩和那个少年建立起深厚的感情,他们花许多时间讨论这里面的东西。 高斯在十一岁的时候就发现了二项式定理 ( x + y )n的一般情形,这里 n可以是正负整数或正负分数。当他还是一个小学生时就对无穷的问题注意了。 有一天高斯在走回家时,一面走一面全神贯注地看书,不知不觉走进了布伦斯维克 ( Braunschweig ) 宫的庭园,这时布伦斯维克公爵夫人看到这个小孩那麼喜欢读书,於是就和他交谈,她发现他完全明白所读的书的深奥内容。 公爵夫人回去报告给公爵知道,公爵也听说过在他所管辖的领地有一个聪明小孩的故事,於是就派人把高斯叫去宫殿。 费迪南公爵 ( Duke Ferdinand ) 很喜欢这个害羞的孩子,也赏识他的才能,於是决定给他经济援助,让他有机会受高深教育,费迪南公爵对高斯的照顾是有利的,不然高斯的父亲是反对孩子读太多书,他总认为工作赚钱比去做什麼数学研究是更有用些,那高斯又怎麼会成材呢?高斯的学校生涯 在费迪南公爵的善意帮助下,十五岁的高斯进入一间著名的学院(程度相当於高中和大学之间)。在那里他学习了古代和现代语言,同时也开始对高等数学作研究。 他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的作品。他对牛顿的工作特别钦佩,并很快地掌握了牛顿的微积分理论。 1795年10月他离开家乡的学院到哥庭根 ( Gottingen )去念大学。哥庭根大学在德国很有名,它的丰富数学藏书吸引了高斯。许多外国学生也到那里学习语言、神学、法律或医学。这是一个学术风气很浓厚的城市。 高斯这时候不知道要读什麼系,语言系呢还是数学系?如果以实用观点来看,学数学以后找生活是不大容易的。 可是在他十八岁的前夕,现在数学上的一个新发现使他决定终生研究数学。这发现在数学史上是很重要的。 我们知道当 n ≥ 3 时,正 n 边形是指那些每一边都相等,内角也一样的 n 边多边形。 希腊的数学家早知道用圆规和没有刻度的直尺画出正三、四、五、十五边形。但是在这之后的二千多年以来没有人知道怎麼用直尺和圆规构造正十一边、十三边、十四边、十七边多边形。 还不到十八岁的高斯发现了:一个正 n 边形可以用直尺和圆规画出当且仅当 n 是底下两种形式之一: k= 0,1,2, ... 十七世纪时法国数学家费马 ( Fermat ) 以为公式在 k = 0, 1, 2, 3, ....给出素数。(事实上,目前只确定 F0,F1,F2,F4是质数,F5不是)。 高斯用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。他是那麼的兴奋,因此决定一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。 1799年高斯呈上他的博士论文,这论文证明了代数一个重要的定理:任何一元代数方程都有根。这结果数学上称为”代数基本定理”。 事实上在高斯之间有许多数学家认为已给出了这个结果的证明,可是没有一个证是严密的,高斯是第一个数学家给出严密无误的证明,高斯认为这个定理是很重要的,在他一生中给了一共四个不同的证明。高斯没有钱印刷他的学位论文,还好费迪南公爵给他钱印刷。 二十岁时高斯在他的日记上写,他有许多数学想法出现在脑海中,由於时间不定,因此只能记录一小部份。幸亏他把研究的成果写成一本叫<算学研究>,并且在二十四岁时出版,这书是用拉丁文写,原来有八章,由於钱不够,只好印七章,这书可以说是数论第一本有系统的著作,高斯第一次介绍”同余”这个概念。Top巴比仑 灿烂的古巴比仑文化 发源於现在土耳其境内的底格里斯河(Tigris)和幼发拉底河 (Euphrates) ,向东南方流入波斯湾。河流经过现在的叙利亚和伊拉克。 现在我们生活的「星期制度」是源於古代巴比仑。巴比仑人把一年分为十二个月,七天组成一个星期,一个星期的最后一天减少工作,用来举行宗教礼拜,称为安息日-这就是我们现在的礼拜日。 我们现在一天二十四小时,一小时有六十分,一分有六十秒这种时间分法就是巴比仑人创立的。在数学上把圆分三百六十度,一度有六十分这类六十进位制的角度衡量也是巴比仑人的贡献。 古代巴比仑人的书写工具是很奇特的,他们利用到处可见的粘泥,制成一块块长方薄饼,这就是他们的纸。然后用一端磨尖的金属棒当笔写成了「楔形文字」 (cuneiform) ,形成泥板书。 希腊的旅行家曾记载巴比仑人为农业的需要而兴建的运河,工程的宏大令人惊叹。而城市建筑的豪美,商业贸易的频繁,有许多人从事法律、宗教、科学、艺术、建筑、教育及机械工程的研究,这是当时其他国家少有的。 可是巴比仑盛极一时,以后就衰亡了,许多城市埋葬在黄土沙里,巴比仑成为传说神话般的国土,人们在地面上找不到这国家的痕迹,曾是闻名各地的「空中花园」埋在几十米的黄土下,上面只有野羊奔跑的荒原。 到了十九世纪四十年代,法国和英国考古学家发掘了古城及获得很多文物,世人才能重新目睹这个地面上失踪的古国,了解其文化兴盛的情况。特别是英国人拉雅( Loyard)在尼尼微(Nineveh)挖掘到皇家图书馆,两间房藏有二万六千多件泥板书,包含历史、文学、外交、商业、科学、医药的记录。巴比仑人知道五百种药,懂得医治像耳痛及眼炎,而生物学家记载几百种植物的名字及其性质。化学家懂得一些矿物的性质,除了药用外,而且还利用提炼金属,制陶器及制玻璃的水平很高。 有这样高文化水平的民族,他们的数学也该是不错吧?这里就谈谈他们这方面的贡献。巴比仑人的记数法 巴比仑人用两种进位法:一种是十进位,另外一种是六十进位。 十进位是我们现在普通日常生活中所用的方法,打算盘的「逢十进一」就是基於这种原理。 巴比仑人没有算盘,但他们发明了这样的「计算工具」协助计算(图一)。在地上挖三个长条小槽,或者特制有三个小糟的泥块,用一些金属小球代表数字。比方说:巴比仑城南的农民交来了 429 袋的麦作为国王的税金,而城东的农民交来了 253 袋的麦。因此国王的仓库增加了 429 + 253 = 682 袋粮食。我们用笔算一下子就得到答案,可是巴比仑人却是先在泥板上的小槽上分别放上:4 个, 2 个,9 个的金属球,这代表了 429。然后在置放 4 个金属球的小槽上添加 2 个小球,中间槽上添加 5 个小球,最后的小槽上添加3 个小球。 现在最后一列的小槽上有 12 个小球,巴比仑人就取掉十个,在中间那个槽里添上 1 个小球-这也就是「逢十进一」。 最后泥板上的数字 682 就是加的结果。这不是很好玩吗?(图二)我们可以利用这方法以实物教儿童认识一些大数的加法。六十进位制目前是较少用到,除了在时间上我们说:一小时 = 60 分,1 分 = 60 秒外,在其他场合我们都是用十进位制。 可是你知道吗?就是古代的巴比仑人定下一年有三百六十五天, 十二个月,一个月有二十九天或三十天,每七天为一个星期,一个圆有三百六十度,一小时有六十分,一分有六十秒等等,我们现代还是继续采用。 考古学家在一块长三又八分之一吋,宽二吋,厚四分之三吋的泥板书上发现了巴比仑人的记数法。这泥板的中间从上到下有像(图四)的符号:读者可以看出这是代表:1,2,3,4,5,6,7,8,9,10,11,12,13。这泥板书受到盐和灰尘的侵蚀,但可以看到泥板书的右边前五行是形如:很明显的这应该代表 10,20,30,40,50。 可是接下来的却是这样的符号:如果我们前面知道的符号是写成: 1 1,10 1,20 (缺三个) 2 2,10 这是什麼意思呢?考古学家猜测那几个符号照上面10,20,30, 40,50的次序应该是代表60,70,80,(缺掉的90,100,110),120,130。 是否那个 1 的符号也可以代表 60 呢?如果是的话那麼 1,10 就是代表 60 + 10 = 70。而 1,20 是代表 60 + 20 = 80。而那个将代表 2 × 60 = 120了。很明显 2,10是代表 120 + 10 = 130。 这样的猜测是合理的,由於巴比仑人没有符号表示零,而他们采用的是 60 进位制,因此同样一个符号可以代表 1 或 60。 没有零符号在记数上是很容易产生误会,比方说:可以看成 1,20 = 1 × 60 + 20 = 80 或 1,0,20 = 1 × 602 + 0 × 60 + 20 = 3620。 到了两千年前巴比仑人才采用表示零。 因此像代表 2,3,0,41 即 2 × 603 + 3 × 602 + 41 = 442841 从此巴比仑人小於 60 的数字的记数可以看出他们懂得「位值原理」。巴比仑人怎样进行除法运算? 从一些泥板书里可以看出底下的对应。2 30 16 3,45 45 1 ,20 3 20 18 3,20 48 1 ,15 4 15 20 3 50 1 ,12 5 12 24 2,30 54 1 , 6 ,40 6 10 25 2,24 8 7,30 27 2,13,20 9 6,40 30 2 10 6 32 1,52,30 12 5 36 1,40 15 4 40 1,30 如果你在现在的伊拉克的土地上发掘这样的泥板书,你能了解这是什麼意思吗?四十多年前考古学家发现这事实上就是巴比仑人的「倒数表」。我现在把以上的表改写:你可以看出这就是把整数 n 的倒数1/n用六十进的分数来表示。比方说 27对应 2,13,20意思就是:你会注意到以上的表缺少了:7,11,13,14,17,19,21,23,26,28,31,33,34,35等等,这是什麼原因呢? 原来是这样:巴比仑人只列下以六十进位制的分数表示式是有限长的那些整数,而这些整数只能是 2a3b5c(这里a,b,c是大於或等於零的整数)的样子。 对於 7 来说,它的倒数如果是以六十进位数表示将得到循环分数,即 8,34,17,8,34,17,....直到无穷。对於 11 也是如此,我们得到 5,27,16,21,49 然后重覆以上的样式以至无穷。 为什麼要构造这样的「倒数表」呢? 我们在小学学计算:先学加,然后学减。先学乘,然后学除。如果现在要算a ÷ b ,我们可以把这问题转化成为 a × (),这样只要知道 b 的倒数,我们就「化除为乘」,计算有时是会快捷一些。 古代的巴比仑人也懂得这个道理,因此在实际生活上,如在灌溉、计算工资、利息、税项、天文等问题上遇到除的问题,就尽可能将它转变为乘的问题来解决,这时候「倒数表」就很有用了。Top祖冲之 法国巴黎的「发现宫」科学博物馆中友祖冲之的大名与他所发现的圆周率值并列。他曾经算出月球绕地球一周为时27.21223日,与现代公认的27.21222日,在那个时代能有那麼伟大的成就,实在让人佩服,难怪西方科学家把月球上许多「火山口」中的一个命名为「祖冲之」。而即使在社会主义共产国家「老大哥」苏俄,在莫斯科国立大学礼堂廊壁上,用彩色大理石镶嵌的世界各国著名的科学家肖像中,也有中国的祖冲之和李时珍,祖氏有那麼杰出的表现,我们不能不对他稍有认识。Top阿基米德 阿基米德最有名的名言,就是:「给我一个立足点,我就可以移动地球。」他一生专心研究科学上的体积和浮力问题,有一个有趣的故事,就是当时候国王叫金匠打造一顶纯金的皇冠,国王因为怀疑金匠加了杂物,就请阿基米德鉴定,阿基米德一直在想鉴定的方法,就在他走进浴缸里洗澡的时候,看见满出去的水时,悟出体积的原理,他高兴的跑出浴室,大叫:「琝铖鴗F!」一时忘了自己是光著身体呢!另外,阿基米德还有几何方面的数学成就哩! 阿基米得是第一位讲科学的工程师,在他的研究中,使用欧几理得的方法,先假设,再以严谨的逻辑推论得到结果,他不断地寻求一般性的原则而用於特殊的工程上。他的作品始终融合数学和物理,因此阿基米得成为物理学之父。 他应用杠杆原理於战争,保卫西拉斯鸠的事迹是家喻户晓的。而他也以同一原理导出部分球体的体积、回转体的体积(椭球、回转抛物面、回转双曲面),此外,他也讨论阿基米得螺线(例如:苍蝇由等速旋转的唱盘中心向外走去所留下的轨迹),圆,球体、圆柱的相关原理,其成就,在古时无人能望其项背。 阿基米得将欧几理得提出的趋近观念作了有效的运用,他提出圆内接多边形和相似圆外切多边形,当边数足够大时,两多边形的周长便一个由上,一个由下的趋近於圆周长。他先用六边形,以后逐次加倍边数,到了九十六边形,求π的估计值介於3.14163和3.14286之间。另外他算出球的表面积是其内接最大圆面积的四倍。而他最得意的杰作是导出圆柱内切球体的体积是圆柱体积的三分之二倍。这定理就刻在他的墓碑上,也成为他名垂千古的一大注记。Top毕达哥拉斯 毕达哥拉斯(Pythagoras)是希腊的哲学家和数学家。出生在希腊撒摩亚(Samoa)地方的贵族家庭,年青时曾到过埃及和巴比仑那%

274 评论

爱美食小雅

苏加宝教授及其课题组发表学术论文40多篇,研究内容涉及无穷维Morse 理论的应用、临界群计算、半线性椭圆共振问题、超线性椭圆问题的多解性、Hamilton系统周期解、拟线性椭圆方程(P-Laplace)、Henon方程基态解的非对称性、非线性薛定鄂方程、Sobolev型嵌入定理等方面,研究成果在包括Advances in Mathematics、Journal of Differential Equations、Calculus Variations and Partial Differential Equations等在内的20种国际学术期刊上发表,大部分是SCI期刊论文,得到国际同行的关注和大量引用,已被30多个国家和地区的近200名数学家发表在近100种学术期刊、8本专著和预印本引用近400次,其中被Annales Institut H.Poincare Analyse NonLineaire、Memoirs of AMS、J.Funct.Anal.等在内的70多种SCI、SCIE期刊引用300多次,被国内外30多篇博士学位论文引用。 Mingzheng Sun, Hongrui Cai, Jiabao Su, Morse theory for the p-Laplacian equation with concave nonlinearities. Preprint2013, Meiqin Li, Jiabao Su, Nonhomogeneous quasilinear elliptic coercive problem on R^N with singular potentials. Preprint 2011. Preprint 2011. Jiabao Su and Zhi-Qiang Wang, Multiple solutions for coercive elliptic equations preprint Jiabao Su, Zhenqi Zhang, Existence and nonexistence results for nonhomogeneous quasilinear elliptic equations on exterior ball with singular potentials. Preprint 2011 Anran Li and Jiabao Su, Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in R^3. Zeitschrift fuer Angewandte Mathematik und Physik, to appear. Anran Li and Jiabao Su, Multiple nontrivial solutions to a p-Kirchhoff equation. Communications in Pure and Applied Analysis, to appear. Leiga Zhao, Jiabao Su, Caiyun Wang, On the existence of solutions for quasilinear elliptic problems with radial potentials on exterior ball. Mathematische Nachrichten, to appear. Mingzheng Sun, Meiling Zhang, Jiabao Su, Critical groups at zero and multiple solutions for a quasilinear elliptic equations. Journal of Mathematical Analysis and Applications,428, 1(2015), 696--712. Mingzheng Sun, Jiabao Su, Leiga Zhao,Infinitely many solutions for a Schrodinger-Poisson system with concave and convex nonlinearities. Discrete and Continuous Dynamic Systems, 35(2015), 427--440. Mingzheng Sun, Jiabao Su, Nontrivial solutions of a semilinear elliptic problem with resonance at zero. Applied Mathematical Letters, 34(2014),60--64. Zhanping Liang, Jiabao Su, Solutions to inhomogeneous quasilinear elliptic problems with concave-convex type nonlinearities. Acta Mathematica Scientia, 2014, 34A(2):217--226 Anran Li, Jiabao Su and Leiga Zhao, Existence and multiplicity of solutions of Schrodinger-Poisson systems with radial potentials. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 144, 02(2014),319--332. Anran Li, Hongrui Cai and Jiabao Su, Quasilinear elliptic equations with singular potentials and bounded discontinuous nonlinearities Topological Methods in Nonlinear Analysis, 43, 2(2014), 439--450. Hongrui Cai, Jiabao Su and Yang Sun, Sobolev type embeddings and an inhomogeneous quasilinear elliptic equation on R^N with singular weights Nonlinear Analysis, 96(2014), 59-67. Hongrui Cai, Jiabao Su, Gradient systems with sublinear term near the origin and asymptotically linear term near infinity Boundary Value Problems 2013 (1) 280 Anran Li, and Jiabao Su, Superlinear gradient system with a parameter. Boundary Value Problems 2012 (1) :110 Leiga Zhao, Anran Li, Jiabao Su,Existence and multiplicity results for quasilinear elliptic exterior problems with nonlinear boundary conditions. Nonlinear Analysis, 75(2012), 2520--2533. Zhanping Liang and Jiabao Su, Existence of solitary waves to a generalized Kadomtsev-Petviashvili equation. Acta Mathematica Scientia, 32B(3)(2012), 1149--1156. Jiabao Su, Quasilinear elliptic equations on R^N with singular potentials and bounded nonlinearity Zeitschrift fuer Angewandte Mathematik und Physik, 63(2012),51-64. Jiabao Su, Rushun Tian, Weighted Sobolev type embeddings and coercive quasilinear elliptic equations on R^N. Proceedings of the American Mathematical Society, 140,3(2012), 891--903. Xiaoli Li, Jiabao Su and Rushun Tian, Multiple periodic solutions of the second order Hamiltonian systems with superlinear terms Journal of Mathematical Analysis and Applications, 385(2012), 1-11. Jiabao Su, Ruiyi Zeng, Multiple periodic solutions of superlinear ordinary differential equations with a parameter Nonlinear Analysis, 74, 17(2011), 6442-6450. Lina Lv, Jiabao Su, Solutions to a gradient system with resonance at both zero and infinity. Nonlinear Analysis, 74,16(2011),5340-5351. Jiabao Su and Zhi-Qiang Wang, Sobolev type embedding and quasilinear elliptic equations with radial potentials. Journal of Differential Equations, 250(2011), 223-242 Jiabao Su, Rushun Tian, Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations Communications in Pure and Applied Analysis, 9,4(2010),885-904. Zhanping Liang, Jiabao Su, Critical point theorem for asymptotically quadratic functional without compactness. Journal of Mathematical Analysis and Applications, 370(2010), 649-658. Zhaoli Liu, Jiabao Su, Zhi-Qiang Wang, Elliptic systems on R^N with nonlinearities of linear growth, Progress in variational methods, 90--106, Nankai Ser. Pure Appl. Math. Theoret. Phys., 7, World Sci. Publ., Hackensack, NJ, 2011. Zhaoli Liu, Jiabao Su, Zhi-Qiang Wang, Solutions of elliptic problems with linearly bounded nonlinearities. Calculus Variations and Partial Differential Equations, 35, 4(2009),463-480. Zhanping Liang and Jiabao Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance Journal of Mathematical Analysis and Applications, 354,1(2009),147-158. Jiabao Su, Leiga Zhao, Multiple periodic solutions of ordinary differential equations with double resonance. Nonlinear Analysis, 70,4(2009), 1520-1527. Zhaoli Liu, Jiabao Su, and Zhi-Qiang Wang, A twist condition and periodic solutions of Hamiltonian systems. Advances in Mathematics, 218, 6(2008), 1895-1913. Jiabao Su, Zhaoli Liu, Bounded resonance problems for semilinear elliptic equations. Discrete and Continuous Dynamic Systems, 19,2(2007), 431-445. Jiabao Su, Zhi-Qiang Wang, Michel Willem, Nonlinear Schrodinger equations with unbounded and decaying radial potentials. Communications in Contemporary Mathematics, 9,4(2007),571-583. Jiabao Su, Zhi-Qiang Wang, Michel Willem: Weighted Sobolev embedding with unbounded and decaying radial potentials. Journal of Differential Equations, 238,1(2007),201-219. Paul H. Rabinowitz, Jiabao Su, Zhi-Qiang Wang, Multiple solutions of superlinear elliptic equations Rendiconti Lincei Matematicae Applicazioni,18(2007),97-108. (Italy) Zhaoli Liu, Jiabao Su, Tobias Weth, Compactness results for Schrodinger equations with asymptotically linear terms. Journal of Differential Equations, 231,2(2006), 501-512. Jiabao Su, Leiga Zhao, An elliptic resonance problem with multiple solutions Journal of Mathematical Analysis and Applications,319(2006),604-616. Jiabao Su, Hong Li, Multiplicity results for the two-point boundary value problems at resonance Acta Mathematica Scientia, 26,1(2006),152-162. Zhaoli Liu, Jiabao Su, Solutions of some semilinear elliptic problems with perturbation terms of arbitrary growth Discrete and Continuous Dynamic Systems, Vol.10,3(2004),617-634. Jiu Quansen, Jiabao Su, Existence and multiplicity results for Dirichlet problem with p-Laplacian Journal of Mathematical Analysis and Applications. 281(2003),587-601 Jiabao Su, Multiplicity results for asymptotically linear elliptic problems at resonance. Journal of Mathematical Analysis and Applications, 278(2003),397-408 Jiabao Su, Zhaoli Liu, Nontrivial solutions of perturbed of p-Laplacian on R^N. Mathematische Nachrichen, 248/249(2003),190-199 Jiabao Su, Nontrivial critical points for asymptotically quadratic functional at resonance, Morse theory, minimax theory and their applications to nonlinear differential equations, 225--234, New Stud. Adv. Math., 1, Int. Press, Somerville, MA, 2003 Jiabao Su, Existence and multiplicity results for classes of elliptic resonant problems. Journal of Mathematics Analysis and Applications, 273,2(2002),565-578. D. Smets, Jiabao Su, M. Willem, Nonradial ground states for Henon equations Communications in Contemporary Mathematics, 4,3(2002),467-480. Shujie Li, K.Perera, Jiabao Su. On the role played by the Fucik spectrum in the determination of critical groups in elliptic problems where the asymptotic limits may not exist. Nonlinear Analysis, 49(2002),603-611. Jiabao Su. Semilinear elliptic Boundary value problems with double resonance between two consecutive eigenvalues. Nonlinear Analysis, 48,(2002),881-895. Jiaquan Liu, Jiabao Su. Remarks on multiple nontrivial solutions for quasi-linear resonant problems. Journal of Mathematics Analysis and Applications, 258,(2001),209-222. Shujie Li, K.Perera, Jiabao Su, Computations of critical groups in elliptic boundary value problems where the asymptotic limits may not exist. Proceedings of Royal Society Edinburgh (A) Mathematics, 131,3(2001),721-732 Jiabao Su, Chunlei Tang, Multiplicity results for semilinear elliptic equations with resonance at higher eigenvalues Nonlinear Analysis, 44(2001),311-321. 苏加宝, 李永青, 关于半线性椭圆共振问题的注记 数学学报, 43,6(2000),1135-1142. Jiabao Su, Existence of nontrivial periodic solutions for a class of resonance Hamiltonian systems. Journal of Mathematics Analysis and Applications. 233(1999),1-25. Jiabao Su, Nontrivial periodic solutions for the asymptotically linear Hamiltonian systems with resonance at infinity. Journal of Differential Equations.145,2(1998),252-273. Jiabao Su, Semilinear elliptic resonant problems at higher eigenvalues with unbounded terms, Acta Mathematica Sinica, New Series,14,3(1998),411-418. 苏加宝, 具有无界非线性项的半线性椭圆共振问题 数学学报, 41,3(1998),715-720. Shujie Li, Jiabao Su, Existence of multiple solutions of a two-point boundary value problem at resonance Topological Methods in Nonlinear Analysis, 10(1997),123-135. Shujie Li, Jiabao Su, Existence of multiple critical points for asymptotically quadratic functional with applications, Abstract and Applied Analysis, Vol.1,3(1996),277-289. Bingyou Li and Jiabao Su, Transfer open or closed set-valued mapping and generalization of H-KKM theorem with applications, Applied Mathematics and Mechanics, 15,10(1994), 981-989. 苏加宝, 广义H-KKM定理及其应用 河北师范大学学报(自然科学版)18,4(1994),1-4.

296 评论

半透明SKY也

200多n前,德国数学家哥德巴赫(Goldbach)发现,似乎任何一个大于2的偶数都可以写成两个质数之和的形式。但是他无法给出证明,他同时代的欧拉等数学家也无法证明。这个问题就成了数学中有名的哥德巴赫猜想,200多n来无数英雄为之竞折腰。

30多n前,陈景润是中国家喻户晓的数学家。他在上世纪六七十n代证明了一个大偶数可以表示为一个质数及不超过两个质数乘积之和的形式,简称1+2。他的这一发现被称为陈氏定理,这是距离哥德巴赫猜想最近的成果,至今无人能够超越。

陈景润完成了1+2的证明后,将大量的精力投入到哥德巴赫猜想的最终证明中。1996n3-19陈景润去世,他生前没有完成哥德巴赫猜想的最终证明。

证明了1+2是陈景润一生中最重要的数学成就,除了这项成就很少有人听说陈景润还有什么其他成就。其实研究哥德巴赫猜想并不是一篇几页的论文就能搞定的,要彻底证明哥德巴赫猜想很可能需要用到新的数学规律甚至新的数学分支。这就对研究者提出了很高的要求,不仅需要有扎实的数学基础,同时也需要有非常强的科研能力。

你看到了陈景润证明了1+2之后的光荣,你没有看到他为此付出了多少,也不知道他在那之后又付出了多少。通过文献检查可以看到,陈景润成名后,几乎每年都有数篇论文发表,甚至在他去世的当月也有论文发表在《数学学报》上。这些论文绝大部分是数论领域中的研究,很多与哥德巴赫猜想有着密切的联系。陈景润虽然没有最终证明哥德巴赫猜想,但他的工作会为其他研究者铺平道路。

对科学家来说,能够做出一项研究成果已经很不容易,尤其是比较重大的研究成果。即使是非常杰出的科学家,一生中也可能只有一两项比较有价值的研究成果。在陈景润的那个时代能够做出1+2这样的成果实属不易,现在的科学家能够有他那样钻研精神的不是很常见。那种精神在某种程度上可以比1+2还要重要。

267 评论

fanfanwing

陈景润是世界著名解析数论学家之一,他在50年代即对高斯圆内格点问题、球内格点问题、塔里问题与华林问题的以往结果,作出了重要改进。60年代后,他又对筛法及其有关重要问题,进行广泛深入的研究。

人物简介:陈景润(1933年5月22日-1996年3月19日),出生于福建福州,毕业于厦门大学,当代数学家,华罗庚数学奖得主,“最美奋斗者”。

提起陈景润,首先想到的就是他在哥德巴赫猜想上的成就,1966年他发表的《表大偶数为一个素数及一个不超过两个素数的乘积之和》(简称“1+2”),成为哥德巴赫猜想研究上的里程碑。

1973年陈景润在《中国科学》发表了“1+2”的详细证明,并改进了1966年宣布的数值结果,立即在国际数学界引起了轰动,被公认为是对哥德巴赫猜想研究的重大贡献,是筛法理论的光辉顶点。他的成果被国际数学界称为“陈氏定理”,写进美、英、法、苏、日等六国的许多数论书中。

陈景润作为世界上著名的数学家,陈景润首次在世界提出,以证实"1+2"猜想而闻名,但是这并不是他在数学领域的唯一成就,陈景润为证实哥德巴赫猜想时,对塔里问题、华林问题、球内格点、圆内格点等都做出了重大改进,并取得了一系列重要成果。在他的研究过程中,成功将之前的最小素数从80继续推进到16,为之后数学事业的发展做出了重要贡献。另外,在证实哥德巴赫猜想时所用的筛选法也是陈景润在研究中摸索出来的最为有效办法,这也为之后人们的研究做了铺垫。

341 评论

相关问答

  • 土耳其科学家发表论文吗

    资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化今天,随着科学的发展,地质学家认为,在地球形成的早期,地球受到了大量的小行星和。

    善美梅子 3人参与回答 2023-12-08
  • 土耳其教授发表5g数学论文

    有这样一个故事。中国天才少年柳智宇在2005年与2006年连续两届在数学奥林匹克中夺得金牌。2006年,银牌得主是一名德国数学天才,叫舒尔茨。十年之后,舒尔茨获

    小葡萄蛋蛋123 3人参与回答 2023-12-08
  • 士耳其教授发表5g数学论文

    主要是因为中国近些年一直在发展科技力量,目前取得非常重大的成果,所以在国内的推广十分的快

    MindTheGapPlz 5人参与回答 2023-12-10
  • Arikan土耳其在哪发表论文

    答:前者主要从事学术的研究,而后者主要是为华为的发展服务,对此,我觉着这两者有着本质的区别,不能一概而论。

    bluelove1995 7人参与回答 2023-12-07
  • 土耳其Arikan论文在哪发表

    论文发表可以从网上尝试发给;去报社打一个发表也可以。

    萤火虫在哪里 6人参与回答 2023-12-10